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Preface

Nuclear magnetic resonance (NMR) spectroscopy is a technique used to determine the structure of molecules at the
level of individual atoms and covalent bonds. While it does not provide a direct picture or image of the molecule, the
NMR data can be interpreted to determine which atoms in a molecule are connected to which atoms, and whether
these bonds connecting them are single, double, or triple bonds. Further information can be obtained from this data
about the distances between atoms that are not bonded, and the angles between bonds, leading to a complete three-
dimensional model of the molecule.

The field of NMR can be divided into three categories: imaging (MRI), solid-state NMR, and solution-state
(liquids) NMR. NMR imaging is familiar to anyone who has gone to a hospital or clinic for an MRI “scan,” which
yields a picture of “slices” through the human body that is extremely useful in medical diagnosis. Solid-state NMR is
the analysis of solid materials, usually ground into a powder; this is applied primarily to the analysis of materials
such as polymers, but it can also be applied to biological membranes. Solution-state NMR looks at molecules
dissolved in a solvent, which can be water or an organic solvent such as acetone or chloroform. This book is focused
on solution-state NMR, the primary tool used by organic chemists and biochemists to determine molecular structure.

A further distinction is made between “small molecules” and “large molecules” in solution. In the context of
solution-state NMR, a large molecule is a biological molecule such as a protein or nucleic acid, made up of many
repeating units that all have similar structures. A small molecule has a molecular weight less than 1000 Da and is
usually made up of diverse structural elements (carbon chains, rings, and functional groups) rather than a repeating
pattern. Small molecules are the domain of the organic chemist: natural products, drugs, and the intermediates and
products of organic synthesis. Also included in this category are the short chains of biological molecules: peptides,
oligonucleotides, and oligosaccharides (sugars). This book will focus on the use of NMR data to determine the
covalent structure (which atoms are connected to which atoms) and three-dimensional shape (stereochemistry and
conformation) of these small molecules.

This book is different from most books on NMR because it is focused on examples and exercises. Each topic is
introduced with one of more examples of NMR data with detailed explanations of the interpretation of that data.
Examples are then followed by a number of exercises using detailed images of NMR data, and these are followed by
solutions, again with detailed explanation of the step-by-step reasoning used to solve the exercise. The title, NMR
Data Interpretation Explained, is an indication of this focus on example and explanation. Every detail and aspect of the
NMR data is explained, not just the simple and beautiful spectra but also the complex and surprising spectra. A large
number of additional exercises, almost all of them showing detailed graphics of NMR data, have been provided at
www.wiley.com/go/jacobsen/nmrdata. Solutions with detailed explanations are provided for half of the exercises,
with the remaining solutions provided to instructors on the same website in a forum accessible by instructors only.
All of the commonly used techniques of small-molecule solution-state NMR are covered: simple one-dimensional
(*H and 3C), edited (DEPT) 3C, selective one-dimensional 'H (NOE, ROE, and TOCSY), and two-dimensional
(COSY, TOCSY, NOESY, ROESY, HSQC, and HMBC). The final chapter puts all of these techniques together to solve
the structures of a number of complex natural products: sesquiterpenes, steroids, alkaloids, sugars, and triterpenes.
Many exercises are provided for each of these molecule types.

Another unique aspect of this book is that it does not attempt to explain the theory of NMR. Other books,
including my own book (NMR Spectroscopy Explained, Wiley-Interscience, 2007), do an excellent job of explaining the
theoretical basis of NMR and how the experiments actually work to give the NMR data. In my experience, the actual
users of NMR spectrometers are more interested in solving a chemical problem using NMR data, and have little
interest in how the spectrometer works or how the nuclei respond to magnetic fields and radio frequency pulses. It is
for these NMR users, industry researchers as well as undergraduates, graduate students, and postdoctoral
researchers in chemistry, biochemistry, medicinal chemistry, and pharmacy, that this book was written.

The NMR data used in this book came primarily from the NMR facility in the Department of Chemistry and
Biochemistry at the University of Arizona. The instruments used include a Bruker Avance-III (400.13 MHz), a Bruker
DRX-500 (499.28 MHz), a Bruker DRX-600 (600.13 MHz), and a Varian Inova-600 (599.7 MHz) with cryogenic probe.
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xiv PREFACE

Every attempt was made to obtain the highest-quality NMR data from pure samples. Data was processed using the
Felix software package (Felix NMR, Inc., San Diego, CA) and the MestReNova software package (MestReLab
Research, Santiago de Compostela, Spain). Literature data was also used, downloaded from the Japanese database
SDBS (Spectral Database for Organic Compounds, National Institute of Advanced Industrial Science and Technol-
ogy, AIST). In a few cases, NMR spectra were simulated using parameters (chemical shifts and | values) obtained
from the literature.

NMR spectrometers are expensive (around $800,000 for a 600 MHz instrument), and require specialized
expertise and expensive cryogens (liquid nitrogen and liquid helium) to operate, so many teaching institutions
are unable to obtain a high-field NMR instrument. It was also with these colleges and universities in mind, all over

the world, that this book was written, so that students can learn the technique using high-quality data from a wide
variety of samples.
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Spectroscopy and the Proton
NMR Experiment

1 WHAT IS THE STRUCTURE OF A MOLECULE?

There are several levels of understanding what a molecule “looks like” on the scale of individual atoms. The first step is
to understand how many of each type of atom make up the collection of atoms that are bonded together to form a
molecule. The molecular formula is an accounting of the types of atoms in a molecule and the number of each type of
atom (e.g., CsHgN20,). Mass spectrometry is used to “weigh” molecules and obtain their exact mass, in atomic mass
units (amu). Because atoms have masses that can differ slightly from integer values (e.g., 'H = 1.007825 amu,
12C = 12.000000, '*O = 15.994915, N = 14.003074), a very precise measurement of the mass of a molecule allows us
to determine the molecular formula. With a molecular formula, we can start to think about how this group of atoms is
connected together. For example, for C;HO (Figure 1.1) we can think of many ways to connect the atoms, while
satisfying the valence rules (four bonds to C, two to O, one to H).

= o — O\ o o /\/ /o\/
. - \ o
|_\ /\/U\H if Q /\

FIGURE 1.1

NMR Data Interpretation Explained: Understanding 1D and 2D NMR Spectra of Organic Compounds and Natural Products, First Edition. Neil E. Jacobsen.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/jacobsen/nmrdata
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CHAPTER 1 SPECTROSCOPY AND THE PROTON NMR EXPERIMENT

Note that all of the C4HO structures in Figure 1.1 have one thing in common: the total of the number of = bonds
plus the number of rings is two in each case. These two “unsaturations” can be determined from the molecular formula
by a simple calculation:

1.
2
3.

Discard the oxygen(s): C4HsO — CyHe.
Any halogens (F, Cl, Br, I) are converted to hydrogens.

Any nitrogens (N) are converted to CH (one C and one H for each N). You now have the modified molecular
formula: C4Hg.

. If n is the number of carbon atoms in the modified molecular formula (C,,), calculate the number of hydrogens
expected in a saturated hydrocarbon with this number of carbons: m=(nx2)+2=(4x2)+2=10.

. Subtract the number of hydrogens in the modified molecular formula (6) from this saturated hydrocarbon value
and divide the resultby 2 m—-6=10 — 6=4; u=4/2=2.

This result (u) is equal to the number of = bonds in the molecule plus the number of rings. Note that a triple bond
(C=C) is really one o bond and two = bonds, so it counts as two “unsaturations”.

For larger molecules the number of isomers (structures with the same molecular formula) increases very rapidly
with the number of atoms. For the formula CgH;;NO5 there are 383 different commercially available compounds!
NMR is especially useful for distinguishing between these many possibilities.

In the NMR instrument, each atom (actually the nucleus of each atom) has a precise resonant frequency in the radio
frequency spectrum. We can “tune in to the radio channel” of each of these atoms in turn and gather information about
the immediate surroundings of that atom in the molecule. There are several kinds of information we can get from each

atom:

1. Nearby functional groups change the resonant frequency in predictable ways, so the exact resonant frequency

can be used to determine the “chemical environment” of that atom. There are two types of these frequency-
shifting effects:

a. Nearby electronegative atoms (O, N, Br, etc.). This effect acts through o bonds and dies off quickly after 2 or

3 bonds. This is similar to the well-known inductive effect that modifies reactivity in organic chemistry
reactions.

b. Nearby double bonds (C=C or olefin/aromatic, C=O or carbonyl, C=N ornnitrile, etc.). This effect acts

directly through space and dies off after about 5 Angstroms (one Angstrom or A is approximately the length
of a C—Hbond). The orientation of the plane of the double bond relative to the atom being observed is also
important.

2. Hydrogen atoms are affected by the proximity of other hydrogen atoms in the molecule. So we can look around

the immediate vicinity of our hydrogen (the one whose radio channel we are tuned to) and see the number and
proximity of other hydrogens or groups of hydrogens. This effect manifests itself in two ways:

a; “Splitting” of the resonant frequency of our hydrogen (the one being observed) by a nearby hydrogen into

two resonant frequencies very close to each other. The stronger the effect, the wider is the separation of the
two frequencies. This effect travels through the bonds and dies off quickly as the number of bonds
separating the two hydrogens increases: 2 bonds >3 bonds >4 bonds. This effect is sensitive to the angles
formed by the bonds connecting the two hydrogens, so we can get information about the relative orientation
of groups connected by single bonds. These can either be fixed orientations determined by rigid bonding in
rings (stereochemistry) or preferred orientations in a flexible molecule (conformation).

. Enhancement of the NMR radio signal received from one hydrogen when we hit the other hydrogen with a

radio signal at its precise radio frequency. This enhancement is called an NOE and it operates directly
through space between hydrogens. The effect dies off quickly with increasing separation and is not seen at
all for distances greater than 5A. The NOE gives us a molecular ruler for measuring distances between
specific pairs of hydrogens in the molecule.

Note that the NMR experiment gives us lots of specific information from the point of view of one atom in the
molecule: nearby functional groups and nearby hydrogens, through bonds or directly through space. We can get



