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Preface

This monograph studies the stabilization theory for linear systems governed by
partial differential equations of parabolic type in a unified manner. As long as
controlled plants are relatively small, such as electric circuits and mechanical
oscillations/rotations of rigid bodies, ordinary differential equations,
abbreviated as ode(s), are suitable mathematical models to describe them. When
the controlled plants are, e.g., chemical reactors, wings of aircrafts, or other
flexible systems such as robotics arms, plates, bridges, and cranes, however,
effects of space variables are essential and non-neglegeble terms. For the set up
of mathematical models describing these plants, partial differential equations,
abbreviated as pde(s), are a more suitable language. It is generally expected that
control laws based on more accurate pde models would work effectively in
actual applications.

The origin of control theory is said to be the paper, “On governors” by
J.C. Maxwell (1868). For many years, control theory has been studied mainly
for systems governed by odes in which controlled plants are relatively small.
Control theory for pdes began in 60’s of the 20th century, and the study of
stabilization in mid 70’s to cope with much larger systems. Fundamental
concepts of control such as controllability, observability, optimality, and
stabilizability are the same as in those of odes, and translated by the language of
pdes. The essence of pdes consists in their infinite-dimensional properties, so
that control problems of pdes face serious difficulties in respective aspects,
which have never been experienced in the world of odes: However, these
difficulties provide us rich and challenging fields of study both from
mathematical and engineering viewpoints.

Among other control problems of pdes such as optimal control problems,
etc., we concentrate ourselves on the topic of stabilization problems.
Stabilization problems of pdes have a new aspect of pdes in the framework of
synthesis (or design) of a desirable spectrum by involving the concept of

vii



viii M Theory of Stabilization for Linear Boundary Control Systems

observation/control, and are connected not only with functional analysis but
also non-harmonic analysis and classical Fourier analysis, etc. The monograph
consists of eight chapters which strongly reflects the author’s works over thirty
years except for Chapter 2: Some were taught in graduate courses at Kobe
University. The organization of the monograph is stated as follows: It begins
with the linear tabilization problem of finite dimension in Chapter 1.
Finite-dimensional models constitute pseudo-internal structures of pdes.
Although the problem is entirely solved by W. M. Wonham in 1967 [70], we
develop a much easier new approach, which has never appeared even among the
community of finite-dimensional control theory: It is based on Sylvester’s
equation. Infinite-dimensional versions of the equation appear in later chapters
as an essential tool for stabilization problems throughout the monograph.
Chapter 2 is a brief introduction of basic results on standard elliptic differential
operators L and related Sobolev spaces necessary for our control problems:
These results are well known among the pdes community, but proofs of some
results are stated for the readers’ convenience. As for results requiring much
preparation we only provide some references instead of proofs. In Chapters 3
through 7, the main topics discussed are, where stabilization problems of linear
parabolic systems are successfully solved in the boundary observation/boundary
feedback scheme. The elliptic operator L is derived from a pair of standard (but
general enough) differential operators (£, 7), and forms the coefficient of our
control systems, where .Z denotes a uniformly elliptic differential operator and
7 a boundary operator. The operator L is sectorial, and thus —L turns out to be
an infinitesimal generator of an analytic semigroup. One of important issues is
certainly the existence or non-existence of Riesz bases associated with L: When
an associated Riesz basis exists, a sequence of finite-dimensional approximation
models of the original pde is quantitatively justified, so that the control laws
based on the approximated finite-dimensional models effectively works. There
is an attempt to draw out a class of elliptic operators with Riesz bases (see the
footnote in the beginning of Chapter 4). However, is the class of pdes admitting
associated Riesz bases general enough or much narrower than expected? We do
not have a satisfactory solution to the question yet. Based on these observations,
our feedback laws are constructed so that they are applied to a general class of
pdes, without assuming Riesz bases.

There are two kinds of feedback schemes: One is a static feedback scheme,
and the other a dynamic feedback scheme. In Chapter 3, the stabilization
problem and related problems are discussed in the static feedback scheme, in
which the outputs of the system are directly fed back into the system through
the actuators. While the scheme has difficulties in engineering implementations,
it works as an auxiliary means in the dynamic feedback schemes. In Chapter 4,
we establish stabilization in the scheme of boundary observation/boundary
feedback. The feedback scheme is the dynamic feedback scheme, in which the
outputs on the boundary are fed back into the system through another
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differential equation described in another abstract space. This differential
equation is called a dynamic compensator, the concept of which originates from
D. G. Luenberger’s paper [33] in 1966 for linear odes. In his paper, two kinds of
compensators are proposed: One is an identity compensator, and the other a
compensator of general rype. We formulate the latter compensator in the
feedback loop to cope with the stabilization problem, and finally reduce the
compensator to a finite-dimensional one. All arguments are algebraic, and do
not depend on the kind of boundary operators 7. In Chapter 5, the problem is
discussed from another viewpoint when the system admits a Riesz basis. Since a
finite-dimensional approximation to the pde is available as a strongly effective
means, an identity compensator is installed in the feedback loop. Most
stabilization results in the literature are based on identity compensators, but
have difficulty in terms of mathematical generality. In Chapters 4 and 5,
observability and controllability conditions on sensors and actuators,
respectively, are assumed on the pseudo-internal substructure of finite
dimension. We then ask in Chapter 6 the following: What can we claim when
the observability and controllability conditions are lost? Qutput stabilization is
one of the answers: Assuming an associated Riesz basis, we propose sufficient
conditions on output stabilization. A related problem is also discussed, which
leads to a new problem, that is, the problem of pole allocation with constraints.
To show mathematical generality of our stabilization scheme, we generalize in
Chapter 7 the class of operators L, in which —L is a generator of eventually
differentiable semigroups: A class of delay-differential equations generates such
operators L.

In our general stabilization scheme, we solve an inverse problem associated
with the infinite-dimensional Sylvester’s equation. The problem forms a so
called ifl-posed problem lacking of continuity property. Finally in Chapter 8, we
propose a numerical approximation algorhism to the inverse problem, the
solution of which is mathematically ensured. The algorhism consists of a simple
idea, but needs tedious calculations. Although the algorhism has some
restrictions at present, it is expected that it would work in more general settings
of the parameters. Numerical approximation itself is a problem independent of
our stabilization problem. However, the latter certainly leads to a development
of new problems in numerical analysis. The author hopes that willing readers
could open a new area in effective numerical algorhisms.

The author in his graduate school days had an opportunity to read papers by
Y. Sakawa, by H. O. Fattorini, and by S. Agmon and L. Nirenberg ([2, 17, 18,
57]) among others, and learned about the close relationships lying in differential
equations, functional analysis, and the theory of functions. Inspired by these
results, he had a hope to contribute to deep results of such nature, since then. He
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is not certain now, but would be happy, if the monograph coould reflect his hope
even a little.

Takao Nambu

December, 2015
Kobe
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Chapter 1

Preliminary results -
Stabilization of linear
systems of finite
dimension

1.1 Introduction

We develop in this chapter the basic problem arising from stabilization
problems of finite-dimension. Since the celebrated pole assignment theory [70]
(see also [56, 68]) for linear control systems of finite dimension appeared, the
theory has been applied to various stabilization problems both of finite
dimension and infinite dimension such as the one with boundary
output/boundary input scheme (see, e.g., [12, 13, 28, 37 — 40, 42 — 45, 47 — 50,
53, 58, 59] and the references therein). The symbol H,, n =1, 2, ..., hereafter
will denote a finite-dimensional Hilbert space with dim H, = », equipped with
inner product {-,-), and norm |-||. The symbol |[-|| is also used for the
Z(H,)-norm. Let L, G, and W be operators in .Z(H,), #(CV;H,), and
£(H,; CN), respectively. Here and hereafter, the symbol .Z(R; S), R and §
being linear spaces of finite or infinite dimension, means the set of all linear
bounded operators mapping R into S. The set .Z(R; S) forms a linear space.
When R = S, .Z(R; R) is abbreviated simply as .-Z’(R). Given L, W, and any set
of n complex numbers, Z = {{; } 1<;<x, the problem is to seek a suitable G such
that (L — GW) = Z, where o(L — GW) means the spectrum of the operator
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L— GW. Or alternatively, given L and G, its algebraic counterpart is to seek a W
such that 6(L —GW) = Z. Stimulated by the result of [70], various approaches
and algorhisms for computation of G or W have been proposed since then (see,
e.g., [7, 10, 14]). However, each approach needs much preparation and a deep
background in linear algebra to achieve stabilization and determine the
necessary parameters. Explicit realizations of G or W sometimes seem
complicated. One for this is no doubt the complexity of the process in
determining G or W exactly satisfying the relation, 6(L — GW) =Z.

Let us describe our control system: Our system, consisting of a state
u(-) € Hy, output y = Wu € CV, and input f € CV, is described by a linear
differential equation in H,,,

Z—L:-&-Lu:Gf, y=Wu, u(0)=uy€ H,. (L.1)
Here, N
Gf=Y fige for f=(fi ... f;)" €CY,

k=1 (1.2)

Wu= ((u,w1), ... (u,wN),,)T for u € H,,

(...)T denoting the transpose of vectors or matrices throughout the monogtaph.
The vectors wy € H, denote given weights of the observation (output); and g €
H,, are actuators to be constructed. By setting f = y in (1.1), the control system
yields a feedback system,

du

E-+(L—GW)u=0, u(0) = ug € Hy,. (1.3)

According to the choice of a basis for H,, the operators L, G, and W are
identified with matrices of respective size. We hereafter employ the above
symbols somewhat different from those familiar in the control theory
community of finite dimension, in which state of the system, for example,
would be often represented as x(-); output Cx; input u; and equation

dx
a Ax+Bu= (A+BC)x, u=Cx.

The reason for employing present symbols is that they are consistent with those
in systems of infinite dimension discussed in later chapters.

Let us assume that 6(L) NC_ # @, so that the system (1.1) with f =0 is
unstable. Given a u > 0, the stabilization problem for the finite dimensional
control system (1.3) is to seek a G or W such that

e E=GY)|| < conste ™™, 1>0. (1.4)

The pole assignment theory [70] plays a fundamental role in the above problem,
and has been applied so far to various linear systems. The theory is concretely
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stated as follows: Let Z = {{; }1<i<n be any set of n complex numbers, where some
& may coincide. Then, there exists an operator G such that 6(L— GW) = Z,
if and only if the pair (W, L) is observable. Thus, if the set Z is chosen such
that mingc; Re §, say pu (= Re {;) is positive, and if there is no generalized
eigenspace of L — GW corresponding to {;, we obtain the decay estimate (1.4).

Now we ask: Do we need all information on o(L — GW) for stabilization?
In fact, to obtain the decay estimate (1.4), it is not necessary to designate all
elements of the set Z: What is really necessary is the number,
[ = mingc7 Re §;, say = Re ), and the spectral property that {; does not allow
any generalized eigenspace; the latter is the requirement that no factor of
algebraic growth in time is added to the right-hand side of (1.4). In fact, when
an algebraic growth is added, the decay property becomes a little worse, and
the gain constant (> 1) in (1.4) increases. The above operator L — GW also
appears, as a pseudo-substructure, in the stabilization problems of infinite
dimensional linear systems such as parabolic systems and/or retarded systems
(see, e.g., [16]): These systems are decomposed into two, and understood as
composite systems consisting of two states; one belonging to a finite
dimensional subspace, and the other to an infinite dimensional one. It is
impossible, however, to manage the infinite dimensional substructures. Thus, no
matter how precisely the finite dimensional spectrum o (L — GW) could be
assigned, it does not exactly dominate the whole structure of infinite
dimension. In other words, the assigned spectrum of finite dimension is not
necessarily a subset of the spectrum of the infinite-dimensional feedback
control system.

In view of the above observations, our aim in this chapter is to develop a
new approach much simpler than those in existing literature, which allows us to
construct a desired operator G or a set of actuators g ensuring the decay (1.4)
in a simpler and more explicit manner (see (2.10) just below Lemma 2.2). The
result is, however, not as sharp as in [70] in the sense that it does not generally
provide the precise location of the assigned eigenvalues. From the above
viewpoint of infinite-dimensional control theory, however, the result would be
meaningful enough, and satisfactory for stabilization. We note that our result
exactly coincides with the standard pole assignment theory in the case where we
can choose N = 1 (see Proposition 2.3 in Section 2). The results of this chapter
are based on those discussed in [48, 51, 52].

Our approach is based on Sylvester’s equation of finite dimension.
Sylvester’s equation in infinite-dimensional spaces has also been studied
extensively (see, e.g., [6] for equations involving only bounded operators), and
even the unboundedness of the given operators are allowed [37, 39, 40, 42 — 45,
47, 49, 50, 53]. Sylvester’s equation in this chapter is of finite dimension, so that
there arises no difficulty caused by the complexity of infinite dimension. Its
infinite-dimensional version and the properties are discussed later in Chapters 4,
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6, and 7. Given a positive integer s and vectors & € Hy, 1 < k <N, let us
consider the following Sylvester’s equation in H),:

XL-MX =-EW, Ec£(CV;H,), where
(1.5)

l—n
)
-

i Mz

k‘gk for z=(z; ... zw)" € CV.

Here, M denotes a given operator in .Z'(Hy), and & vectors to be designed in H;.
A possible solution X would belong to . (H,; H;). An approach via Sylvester’s
equations is found, e.g., in [7, 10], in which, by setting n = s, a condition for the
existence of the bounded inverse X ' € #(H,) is sought. Choosing an M such
that (M) C C,, it is then proved that

L+(X'"EW=X""MX, oX 'MX)=0c(M)CC,,

the left-hand side of which means a desired perturbed operator. The procedure of
its derivation is, however, rather complicated, and the choice of the & is unclear.
In fact, X ~' might not exist sometimes for some &;.

The approach in this chapter is new and rather different. Let us characterize
the operator L in (1.5). There is a set of generalized eigenpairs {A;, ¢;;} with the
following properties:

(i) o(L)={A: 1 v(<n)}, A,-;él-fori#j:and
(ii) LfPij=7Li¢ij+Zk<jajk(Pik, I<igy, 1<j<m.

Let Py, be the projector in H, corresponding to the eigenvalue Ai. Then, we see
that Pju = ZTLluij(P[j for u € H,. The restriction of L onto the invariant
subspace Py H, is, in the basis {1, ..., @in,}, is represented by the m; x m;
upper triangular matrix A;, where

o J<kh
Ailjn=13 A, Jj=k, (1.6)
0, j>k.

If we set A; = A; + N;, the matrix N; is nilpotent, that is, N;"' = 0. The minimum
integer n such that ker N|' = ker Ni'”rl , denoted as [}, is called the ascent of A; — L.
It is well known that the ascent /; coincides with the order of the pole A; of the
resolvent (A — L)™', Laurent’s expansion of (A — L)~} in a neighborhood of the
pole A; € (L) is expressed as

i
(A-L)y'= Z K_/ +Zl 2)’K;, where

l

(1.7)

I (€—L)-
[ig iy KZ—. = U, Ll L5:050
mi, K 2m/|c—x,-| ST j+]dC j =1, 41,33,



