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This work is dedicated to my wife and son, and also to all my loved ones



Preface

This book has been written to present the conceptual basis of “Nonlinear Dynamics” of
structural systems. Although there are many papets on this subject, 1 have decided to write
this book for educational purposes addressed to students with an academic level equivalent
to a master’s degree.

The book is divided into three main patts: the first one sets up the basis on which the
nonlinear dynamics applied to discrete structures is based on; the second one shows the
effect of time-independent constitutive model behavior within the nonlinear dynamic
response; and finally, the third part analyzes the effect of time-dependent constitutive
models in a nonlinear dynamic behavior.

This work has been possible thanks to the institutional support of CIMNE (International
Center for Numerical Methods in Engineering), which has financially supported this book
since its first edition in Spanish in 2002, and later in its English edition. Many people have
participated in the latter, and I would particularly like to thank Ms. Hamdy Bricefio, Prof.
Miguel Cerrolaza and Cristina Pérez Arias for their careful translation and revision of this
text. I would also like to thank all my students who have contributed to the correction of
the text during the eleven years that this book has been used as a syllabus of the
“Nonlinear Dynamics” course in the Department of Strength of Materials, at the Technical
University of Catalonia, Spain.

I hope these notes will contribute to a better understanding of the nonlinear dynamics and
encourage the reader to study this subject in greater depth.

Barcelona, May 2014

Sergio Oller
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1 Introduction

Structural dynamics studies the structural equilibrium over time among external forces,
elastic forces, mass forces and viscous forces for a discrete structural system with points
that are internally linked to each other and all linked to a fixed reference system. These
internal links between points describing the structural system may be elastic or not. 1f they
are not elastic, the behavior of the system of points is non-conservative and therefore the
structural material has a wonlinear dissipative constiintive bebarior. Additionally to this nonlinear
behavior, there is also a wonlinear dissipative bebavior due to the effects of the material viscosity that
leads to viscous forces dependent on the system velocity. In simpler cases, the damping
non linearity is due to the development of viscous forces proportional to the velocity;
however, in more complex cases the viscosity term may be time-dependent. Also, the
system’s non linearity can be observed in systems having large displacements and where the
system works beyond its original geometric configuration, leading to a nonlincar kinematic
bebavior. Such non linearity is even more pronounced when large strain occurs along with
large displacements, rurning the solution of the structure’s dynamic problem more
complex.

All the above mentioned subjects will be thoroughly studied in this work; concepts are
based on the nonlinear dynamics of structures, on the mechanics of continuum media and on numerical
technigues such as the finite element method.

A nonlinear structural dynamics course may have different approaches to the content
and development of concepts it must have and all of them are valid as long as the goals are
achieved. This work deals with the required concepts to complete the basic training in
structural nonlinear dynamics, in the mechanies of continuum media and in the finite
element method. Accordingly, the topics included in this basic training in structures that
are assumed to be already known by the reader will not be studied again.

A brief description of the book’s contents follows: in chapter 2, an intraduction to the
thermodynamical basis of the motion eqnation is presented. This fundamental chapter contains the
origins of the problem, which is set within a structured formulation that can address all
remaining items in a consistent way. In chapter 3, the methods to solve the motion
equation are described in detail; both the implicit and the explicit procedures and the
advantages and drawbacks of each method are analyzed. In chapter 4, the stability concept
of the solution of conservative systems is studied for different methods in order to solve
the equation of movement. Once the basis of the solution stability of linear systems are
established, an approximation to the nonlinear problem is made and criteria for the stability
study are provided. Energy conservation here is a crucial requirement. This leads to the
“formulation of conservative solution methods™ currently being used in nonlincar
dynamics. In chapter 5, once the basis of nonlinear dynamics are set, the time-independent
constitutive formulation, such as plasticity and damage, is addressed showing also how the
structural nonlinearity is affected by these behaviors. Similarly, in chapter 6 the
constitutive behavior of time-dependent materials, such as delayed elasticity and relaxation,
is derailed, where the nonlinear damping is included in a natural way. This is emphasized
because it is considered a part of the nonlinear dynamics where there is a conceptual gap.






2 Thermodynamic Basis of
the Equation of Motion

2.1 Introduction

The thermodynamic basis defining the linear or nonlinear behavior of a solid during the
mechanical process is introduced in this chapter. The synthesized concepts here help to
understand the solid nonlinear behavior and to cleatly set equilibrium at every time.

The kinematics of deformable solids is briefly reviewed to establish the notation to be used as
well as the definitions of the mechanics of continuum media which are important to
remember. A brief description of the thermodynamics is also presented to point out the most
relevant aspects of the formulation of constitutive models for the nonlinear behavior of
solids. Reference to the mechanics of continuous media and to thermodynamics™** is
highly recommended to deepen and broaden the concepts addressed here.

2.2 Kinematics of deformable bodies

In order to sustain the formulation of constitutive models, it is necessary to introduce
the basic concepts describing the kinematics of a point in the space, the stress and the
strain measurements as well as their relation in different configurations. The purpose of
this chapter is to establish the notation and review some definitions. It is not intended to
substitute any specific book of contnuum mechanics. Therefore, reference to the
sources ™ is recommended.

2.2.1 Basic definitions of tensors describing the kinematics of a point
in the space

Let a continuous solid in three dimensions be considered, represented by ohe domain
Q,c R? located in the space in its anvent configuration in time ¢, or by an image of this
domain located in the space in an Zntermediate configuration Q,c R’ or by the domain

Q,c R’ located in the reference configuration or original configuration (see Figure 2.1).

! Malvern, L. (1969). Introduction to the mechanics of continnosus medinm. Prentice Hall, Englewood Cliffs, NJ.
2 Lubliner, J. (1990). Plasticity theary. MacMillan, New York.
I Maugin, G. A. (1992). The thermomechanics of plasticity and fracture. Cambridge University Press.
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.Y CURRENT  xu
ax, ~1 ] L+
/ Q,cR?
‘x‘
Xty | ' - F"=f-—x
[ L] oK
i * X
Q,cR*
|
REFERENCE . L
* X o
- X,:!
[ 177 QcR’
INTERMEDIATE

Figure 2.1 —Schematic representation of the kinematic configurations of a solid in the
space.

A pointX €, of coordinates (x,)‘,, located at the reference confignration, to which one
and only one of the points in the ufermediate confignration corresponds, represented by
X eQ, of coordinates (X, ), » and similarly corresponds to it X e Q, with coordinates (x,)

ity
corresponding to the ament configuration. Thus, the body movement is described as a
function of its position in the reference configuration and of the time,

x=x(Xu): XeQ,

1)
‘The gradient of deformation tensoris defined as the following transformation
x
ox
F= :I):V(,x:T:J 22)
x,

where J is the Jacobian matrix. The remaining transformations shown in Figure 2.1 are
obtained from the following definiton,

fx  Ox OX e
Fe——=———xF" - (2.3)
ax, OX, 0x,

where

)

Q
»

Elastic transformation,

i ;€1|

,\
-

Fr=""r

2.4)
Plastic transformation,

]

[23)
P

The change of the solid volume during a configuration change is obtained by the
determinant of the Jacobian matrix commonly known as Jacobian. Thus,
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v
o =fif=[F = >0 25)

dV and dV are the infinitesimal volume in the configurations Q, and Q, respectively.

The strain gradient tensot can be decomposed as the following polar transformation,

F=R-U=V-R (2.0)
where R is the so called orthogonal tensor, which meets the following orthonormal condition
R-R"=R"-R=1, and both U and V are positive-defined symmetric tensors. The
definition of the latter depends on the Cauchy-Green yght tensor C=F" - F | then the rght
stretehing tensor is equal to U=C"*. The Cauchy Green lgfl tfemsor is also defined as
B=F-F', so that by subsituting equation (2.6) into  the latter
B=F-F =R-U-U-R" =R-C-R" is then obtined and from here the lff stretching tensor
can also be defined asV =B'? | so it can be rewritten as V=R-U-R’ =F+R". From here
it is obvious that the gradient of deformation can also be written as F=V-R .

Following Noll’s notation (see Lubliner’), W, is called an Euclidian generic spatial vector
defined in any configuration x; thus, Vyand V will be the vectors defined in the rference
and arrent configuration, respectively. The linear continuous space is designated as L{x;y)
that rransforms x —y. Based on this criterion, these tensors are designated according to

the origin and destination of the transformation they perform.

Ce L( YE d) U eL(Vo; ,,) . Reference tensors - Lagrangeans,
Be L(ﬁ:\}) . Ve L(ﬁ;\}) : Current Tensors - Eulerians,

ﬂ; ¥, = *Q\} 1
Fe L(V‘ V) REL(\% ) J; Bipunctual Tensors.
L

Tensors F e L V‘,LV) and F’ e L(\»{,:Vp) are also called material tensors and they are

invariant under any Fuclidian transformation.

2.2.2 Strain measurements
The strain in the reference configuration, also called Lagrangian straimn, is defined as:
1
E,=—(u"-1) 2.8)

"
n

Then, the following strain measurements are obtained:

para: n=0=E, =InU | Def. natural )
E,=—(U" 1) = {para: n=1=E, =U -1 2.9)

para: n=2=E=E, =—(C~1) ,Def de Green - St. Venant

SR

The Ewulerian strain measured in the current configuration is expressed as the Almansi
form. Then,
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e:%(l—B") 2.10)

where B is the Cauchy-Green left tensor already defined, and B~ is commonly called the
Finger tensor. In casc\F - I| << 1, all the strains previously defined coincide E, =e=g and get
closer to the infinitesimal strain,

e=V“'u=_I)—(VUu+V5u) @110

where x=x,+u = u=x-x, is satisfied, and x; is the coordinates of the point X in
the reference configuration and u is the relative displacement of such a point. Thus, the
gradient is obtained as,

vou_ﬁ_“z[a;‘_l]:(p_l)zj 2.12)

Ix x,,

From the latter and cquation (2.11), the mfinitesimal strain and the strain gradient are
obrained as

ox 0 cu .
F:—:——(x“ +u): I+— =1+
ox, .0x, ox,

B:V'Vu:%(j+j7)

2.2.3 Relationships among mechanical variables

Given the transformation of the strain gradient ¥, which can relate the position of a
point in a particular configuration to its image in any other configuration, an equivalence
relationship can be established among all the other mechanical variables in one
configuration with respect to their images corresponding to any other configuration.
Therefore, the following tensor transformations' ™" are defined

+ Marsden ). And Hughes T. (1983). Mathematical foundations of elasticity. Prentice Hall, Enlewood Cliffs,
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Figure 2.2 — Relationships among the mechanical variables in different configurations.
push forward 9(A,)=F"-(A,)F'
Covariant -
pull back p(A,)=F (A,)F
Tranformations . , (2.14)
push forward :(ﬁ(A“ ) =F" ~(A”)-F
Contravariante

pullback  :(5(A")=F"'-(A")-F’

where the operators and their expression as a functon of the gradient of strain are shown in
Figure 2.2 and A, and A* are w-mariant generic tensors of second-order (deformation
tensor E<>e) and contravariant (stress tensor S > 1(o)) respectively. Particularly, the

following transformations are obtained for the transportation of the stress-deformation
and constitutive tensors',

e=NE) e = Fyi EyFy e=F".E-F'
E=d(e) Ey=F;eFy; E=F".¢e-F
7=HS) ty =FySyFh t=F -S-F'
S =(r) Sy =Fi'yF S=F'.tF"
Cc= @(C) S = Fy F o Fi FuCuma

C= {’(C) Cuxt =Fy 'F i_J| F k;\'l Flltlcuk

Table 2.1 Kinematics: relation among tensors of the current and reference configurations.



