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Chapter 1

Phenomena of Perturbation in
Electrical Systems

1.1. Electromagnetic perturbations in energy systems
1.1.1. Introduction

Power electronic systems are increasingly being used in
every field; initially, they were used in the industrial sector
and then used increasingly in transportation, services and
housing sectors. The flexibility in the control of electrical
energy explains this evolution well.

For the purposes of illustration, we estimate that the
electrification of service or control functions in an aircraft
offers the following gains!:

— 10% on the mass;

— 9% on fuel consumption;

— 13% on thrust from the engines;
— 15% on maintenance costs;

— 10% on the buying price.

1 According to SAFRAN company, symposium SPEC 2007.
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The field of automobiles is also subject to this evolution:
the development of hybrid vehicles over the last 10 years
and, more recently, the re-emergence of the fully electric car
(while waiting for fuel cells vehicles) are evidence of this.
Already, a large number of services have been electrified in
thermal engine automobiles because of the flexibility of
controls (speed variation) and high yield of the electrical
systems: power steering, anti-blocking system (ABS), various
pumps, window winders, air conditioning (to come).

The introduction of this technology, as a consequence,
must take into consideration its implementation constraints;
electromagnetic compatibility (EMC) in particular. Indeed,
static converters based on power electronics are important
sources of electromagnetic perturbations that can
occasionally cause malfunctions in their local or distant
electronic environment: avionics, navigation systems,
reception antennae, etc. Thus, it is important to understand
the origin of these phenomena, their mode of propagation
and the effects on their potential “victims” in order to
optimize the essential reduction or protection devices
necessary to conform to the standards of EMC.

A chain of management of the electrical energy is
generally organized according to the diagram in Figure 1.1: a
primary electrical source powers the energy conversion
system (distributed control), which itself powers one or more
passive loads or actuators. The link between these
components is achieved through conductors or power cables.
The converter can itself be a complex device with different
levels of conversion and have auxiliary supplies.

The converters carrying out the processing of electrical
energy (conditioning, control) are based on the use of power
electronics in the same manner as microelectronics and
signal processing. It is noteworthy to observe that these two
fields are based on the switching of semiconductors. In the
first case, this involves power components (insulated grid
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bipolar transistor (IGBT), metal oxide silicon field effect
transistor (MOSFET, diodes, etc.)) operating with vertical
conduction which, in a switching system, confer a very high
efficiency to the static converters where they are used; in the
other case, this involves heavily integrated lateral
components that enable the increase in speed of information
processing. In each case, the high-frequency operation of
these systems causes electromagnetic perturbations, the
disturbance frequencies of which get closer and closer.

Aucxiliary supplies

] s

7 >

BF Conversion HF Conversion|

i /7 -
L
-Converter- - Load, actuator

pr—

Primary source

Ground

Figure 1.1. Organization of an power electronics management system

The consequences of the perturbations emitted by the
power devices can be very serious in terms of the reliability
and/or security of systems: in an airplane where security
depends on electronic localization, communication and flight
control systems, the introduction of electrical energy control
systems based on power electronics must not threaten the
current level of security; a good knowledge of these
phenomena is therefore essential in this field.

Near-field or radiative couplings are proportional to the
temporal derivative of the electrical quantities: Mdi/dt,
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CdV/dt; therefore, as their importance increases, these
quantities are naturally bigger and the harmonics of the
commuted electrical quantities are of a higher frequency.

Thus, the switching of power semiconductors can cause
conducted and emitted electromagnetic perturbations that
cover a very large frequency range as shown in Figure 1.2.

Power stages

N
- Switching
transients Control
Switching harmonics stages

4

- -

f_—&_ﬂ

Rectifying harmonics E -

& -
- L

= - - - -

i "3 HE) ' - 7 z s -
0 10 10 ® 16 6 W0 4 10 F (Ha)
1 Conversion . .
!\ structure b 4 Digital circuits
switching mode Lo
} Switching |
technology

Figure 1.2. Frequency range of power electronics perturbations

— At low frequency from the network frequency of 50 Hz:
the direct switching of diode or thyristor rectifiers, of triac
dimmers, in synchronization with the network frequency,
generates perturbations observable up to a few tens of
kilohertz. This range is known as the “power grid
harmonics”.

— At medium frequency (ranging from 10 kHz to 10 MHz):
the switching of controlled semiconductors (MOSFET, IGBT)
is performed in this range for switched-mode power supplies,
choppers and power inverters. The commuted quantities
show very quick temporal variations (of the order of a few
10 kV/ps and a few 100 A/ps) with extremely large spectral
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contents observed over at least four frequency decades: from
104 to 108 Hz.

— At high frequency: the transients in switching of
semiconductors excite the normal modes of very low
resistance electrical circuits (necessary for small losses).
Thus, very high frequency resonances appear (10 MHz-1
GHz) during each switching between the parasitic
inductances of connections (or of magnetic components) and
the structural capacitances of the semiconductors.

The reality is more complex than this first classification
because in an electronic power device, there are generally
several stages of conversion operating at different
frequencies (rectifier, high frequency (HF) switch-mode for
auxiliary power supplies, medium frequency (MF) switch-
mode for power, etc.) that interfere or intermodulate. For
illustrative purposes, Figure 1.3 shows the spectrum of the
current measured at the input of an upstream switch-mode
power supply (black curve) and at the input of a downstream
rectifier (gray curve). We can clearly see the contribution of
the rectifier starting from 50 Hz and the multiple harmonic
peaks that it generates until approximately 10 kHz. Beyond
that, we observe (black curve) multiple 15 kHz peaks
(switch-mode frequency) that are modulated by the operation
of the rectifier and are not modulated on the gray line: the
effect of modulation is represented by a certain level of noise
at the bottom of the switch-mode harmonic peaks (area
circled in dotted line).

These observations show that the electromagnetic
perturbations caused by the static converters are not only
conducted in the electrical networks and in the cables
linking the loads, but are also very easily transmitted by
direct radiation, taking into account the amplitudes of the
currents and voltages that are in play as well as their
frequencies (see Figure 1.1).
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Figure 1.3. Spectrum of parasite input current of a power supply
modulated or not by the input rectifier

1.2. Power grid harmonics
1.2.1 Presentation

In land-based or on-board (aircraft, vessels, etc.) electrical
networks, the real shape of the current or voltage wave is
never perfectly sinusoidal; real waves include harmonics
caused by connected devices and present nonlinear features:
diode rectifiers, inductive loads whose magnetic material is
saturated over the course of its operation cycle (ballast of
fluorescent tubes for example). They therefore summon non-
sinusoidal currents which create deformations in the voltage
which will, all the while remaining periodic, be deformed by
harmonics, generally of odd order.

Figure 1.4 illustrates the propagation mechanism of
harmonics in a grid: a nonlinear load creates harmonic
currents that, while they travel through the branches of an
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impedant network, create harmonic voltage drops. The
voltage wave is therefore deformed at the observed points.
This deformation is evidently bigger as the impedance of the
network is also bigger.

Sinusoidal voltage source .
7 line b Linear load

| S

Nonlinear load

Figure 1.4. Propagation of harmonics in a network and its
consequences on the voltage waveforms

In addition to the effects resulting from the flow of
harmonic currents in the lines of non-zero impedance, the
voltage harmonics originate from small imperfections of
construction (asymmetries) in the winding of equipment, in
other words, rotating machines (motors and alternators) and
transformers. These third-order harmonic voltages play a
small part, and with low rates, in the origin of the overall
harmonic distortions.

For household appliances, it is the accumulation of
devices, all in phase and connected to an insufficiently small
line impedance, that creates a major harmonic pollution of
the network. We can cite, for example, the simultaneous
operation of multimedia devices (and of their switch-mode
power supply), the constant connection of computers as well
as the general use of fluorescent lamps.
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The harmonics, being caused by nonlinear loads, are
therefore preferentially propagated between phase and
neutral on a single-phase network or between the phases of a
three-phase network (supposing the load does not have a
neutral connection). This is called differential-mode
propagation.

1.2.2. Characterization of the quality of electrical energy

This pollution is characterized by the total harmonic
distortion defined either by its relation to the voltage
fundamental or by its relation to its root mean square
(RMS), as such:

TDH [1.1]

fund =

Thus, it is appropriate to be vigilant with the adopted
definition when we want to quantify these effects.

Currently in France, the distortion rate, except in certain
rare cases, is between:

— 5% and 8% in the low-voltage grid;

— 5% and 7% in the medium-voltage grid;

— 2% and 3% in the high-voltage grid.

The current absorbed by a nonlinear load is defined in the

same way by its current distortion rate (we can also find the
definition relative to the total RMS value):

JL +12 +...
TDH ,,, =~~—"— " [1.2]

/

Therefore, we acknowledge that the presence of harmonics
contributes to the augmentation of the RMS current, which



