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Preface

The abbreviation VLSI stands for Very Large Scale Integration. Integrated circuit technology allows billions of
transistors to be fabricated into a single chip. The development of this technology only occurred in the twentieth
century, somewhere in the mid-1920s, when numerous people tried to create devices which intended to convert
solid-state diodes into triodes by controlling current. However, it was only in 1947, with the creation of transistors
at Bell Labs that vacuum tubes were replaced by solid-state devices.

Factually the Moore’s Law was always validated for prediction of exponential complexity growth and advancement in
the performance of integrated circuits. Most semiconductor based industries, face extreme problems in maintaining
all aspects of production process during designing of the chip. These issues range from scientific research in
discovering novel materials and devices to advanced technology developments and finding new killer applications.
This book has been compiled in order to emphasize the latest developments in the vast field of VLSI design.

The contributors have made no attempt to be comprehensive on the topics. Instead, they tried to provide some
promising concepts, such as problems and challenges for the introduction of new-generation electronic design
automation tools, optimization, modeling and simulation methodologies, thermal and power reduction and
management, parasitic interconnects, etc.

I would like to thank all the authors for their excellent contributions in different applications of VLSI. Despite the
rapid advances in the field, I believe that the examples provided here will allow us to look through some main
researches. I hope that this book will prove to be a worthy contribution in the field of VLSL I also wish to thank
the publisher and the publishing team for their outstanding support at every level of the editing process. Lastly, I
wish to convey my regards to my friends and family for supporting me in every endeavor of my life.

Editor
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We demonstrate faster and energy-efficient column compression multiplication with very small area overheads by using a
combination of two techniques: partition of the partial products into two parts for independent parallel column compression and
acceleration of the final addition using new hybrid adder structures proposed here. Based on the proposed techniques, 8-b, 16-b, 32-
b, and 64-b Wallace (W), Dadda (D), and HPM (H) reduction tree based Baugh-Wooley multipliers are developed and compared
with the regular W, D, H based Baugh-Wooley multipliers. The performances of the proposed multipliers are analyzed by evaluating
the delay, area, and power, with 65 nm process technologies on interconnect and layout using industry standard design and layout
tools. The result analysis shows that the 64-bit proposed multipliers are as much as 29%, 27%, and 21% faster than the regular W, D,
H based Baugh-Wooley multipliers, respectively, with a maximum of only 2.4% power overhead. Also, the power-delay products
(energy consumption) of the proposed 16-b, 32-b, and 64-b multipliers are significantly lower than those of the regular Baugh-
Wooley multiplier. Applicability of the proposed techniques to the Booth-Encoded multipliers is also discussed.

1. Introduction

High-speed multiplication is a primary requirement of high-
performance digital systems. In recent trends, the column
compression multipliers are popular for high-speed compu-
tations due to their higher speeds [1, 2]. The first column
compression multiplier was introduced by Wallace in 1964
[3]. He reduced the partial product of N rows by grouping
into sets of three-row set and two-row set using (3,2) counter
and (2,2) counter, respectively. In 1965, Dadda altered the
approach of Wallace by starting with the exact placement
of the (3,2) counter and (2,2) counter in the maximum
critical path delay of the multiplier [4]. Three-dimensional
minimization- (TDM-) based column compression approach
was proposed in 1996 to perform fast multiplication [5].
Since the 2000s, a closer reconsideration of Wallace and
Dadda multipliers has been done and proved that the Dadda
multiplier is slightly faster than the Wallace multiplier and
the hardware required for Dadda multiplier is lesser than
the Wallace multiplier [6, 7]. The HPM-based column com-
pression was developed in 2006, and it has standard layout
structure than Eriksson et al’s multiplier [8]. The detailed case

for HPM-based Baugh-Wooley multiplier against the Booth-
Encoded multipliers has been described in [9]. In this work,
we implement the proposed techniques with the W, D, H
based Baugh-Wooley multipliers, and the improved perfor-
mance is compared with that of the same regular multipliers.

The Baugh-Wooley (BW) algorithm is a relatively
straightforward way of doing signed multiplications [10];
Figure 1 illustrates the algorithm for an 8-bit case, where the
partial-product bits have been reorganized as specified by
Sjalander and Larsson-Edefors in his work [11]. The creation
of the reorganized partial-product array comprises three
steps: (i) the most significant bit (MSB) of the N — 1 partial-
product rows and all bits of the last partial-product row,
except its MSB, are inverted; (ii) a “1” is added to the Nth
column; (iii) the MSB of the final result is inverted. The
total delay of the multiplier can be split up into three parts:
due to the partial-product generator (PPG), partial-product
summation tree (PPST), and final CPA [12]. Of these, the
dominant components of the multiplier delay are due to the
PPST and the final adder. The relative delay due to the PPG
is small, Therefore, a significant improvement in the speed
of the multiplier can be achieved by reducing the delay in
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FIGURE 1: Tllustration of an 8-bit Baugh-Wooley multiplication.

the PPST and the final adder stage of the multiplier. In this
work, the delay of PPST is reduced by using two independent
structures in the partial products. The proposed hybrid
CPA, based on arrival profile aware design [12, 13] and the
BEC (Binary to Excess-1 Converter) Logic [14, 15], computes
the final products much faster. Arrival profile aware hybrid
adders have been reported earlier [12, 13]. Recently, further
investigations on the same are reported in [16].

This paper is structured as follows. Sections 2 and 3
describe the design of parallel structures for the PPST and the
design of hybrid final adder structure, respectively. Section 4
reports the ASIC implementation details and the simulation
results. Finally, Section5 summarizes the result analysis.
Throughout the paper, it is assumed that the number of bits
in the multiplier and multiplicand is equal.

2. Design of Parallel Structures

The multiplication process begins with the generation of all
partial products in parallel using an array of AND gates. The
next major steps in the design process are partitioning of the
partial products and their reduction process. Each of these
steps is elaborated in the following subsections.

2.1. Partitioning the Partial Products. We consider two n-bit
(8-bit) operands of Baugh-Wooley multiplier partial products
which form a matrix of n rows and 2n columns as shown
in Figure 1. Initially for the partial product of Baugh-Wooley
multiplication, we assign an integer as shown in Figure 2(a);
for example, p00 is given an index 0, pl0 an index 1, and
so on. For convenience, we rearrange the partial products as
shown in Figure 2(b). The two longest columns in the middle
of the partial products contribute to the maximum delay in
the PPST. Therefore, in this work, we split up the PPST into
two parts as shown in the Figure 2(c), in which both parts
share equal number of columns. That is, part0 consists of

n columns and partl also consists of n columns. We then
proceed to sum up each column of the two parts in parallel.
The summation procedure adopted in this work is described
in the next section.

2.2. The W, D, H Based Reduction. Next, the partial products
of each part are reduced to two rows by the using (3,2) and
(2,2) counters based on the W, D, H reduction algorithm.
The HPM-based reduction is shown in Figures 3 and 4.
The grouping of 3-bits and 2-bits indicates (3,2) and (2,2)
counters, respectively, and the different colors classify the
difference between each column. The bit positions s0, 22, and
29 are added using (3,2) counter to generate sum s2 and carry
c2. The final two rows of each part are summed using a carry
lookahead adder (CLA) to perform fast addition, and it forms
the partial final products of a height of one-bit column, which
is indicated at the bottom of Figures 3 and 4.

The two parallel structures in Figures 3 and 4 based
on the HPM method are shown in Figure5, where HA,
FA, p0, pl, and p denote half adder ((2,2) counter)), full
adder ((3,2) counter), partial final product from part0, partial
final product from partl, and final product, respectively. The
numerals residing on the HA and FA indicate the position of
partial products. The outputs of part0 and partl are computed
independently in parallel, and those values are added using a
high-speed hybrid final adder to get the final product.

However, before we proceed to carry out the final addition
with the proposed hybrid adder, we first carry out the final
addition with the faster adder of CLA for both the unparti-
tioned W, D, H Baugh-Wooley multiplier and the partitioned
W, D, H Baugh-Wooley multiplier. This enables us to evaluate
and analyze the effect of partitioning the PPST into two
parts. The simulation results and their comparison are listed
in Tables 1, 2, and 3, in these tables a negative percentage
indicates overhead and a positive percentage indicates a
reduction/improvement with reference to the compared mul-
tiplier. The comparison shows the percentage improvement
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TaBLE I: Partitioned Wallace performance.

Regular Wallace multiplier with CLA Partitioned Wallace multiplier with CLA Performance comparison (%)
Word size Delay (ns) Area (ymz) Power (uW) Delay (ns) Area (ymz) Power (uW) Delay Area Power
16 1.84 3,983 0.66 1.76 4,093 0.69 4.34 -2.76 -4.54
32 2.52 14,398 3.21 2.30 14,665 333 8.73 -1.85 -3.73
64 3.29 53,896 16.86 292 54,449 17.34 11.24 -1.02 -2.84

TaBLE 2: Partitioned Dadda performance.

Regular Dadda multiplier with CLA Partitioned Dadda multiplier with CLA Performance comparison (%)
Word size Delay (ns) Area (ymz) Power (u4W) Delay (ns) Area (ym2) Power (uW) Delay Area Power
16 1.69 3,843 0.61 L.66 3,986 0.65 177 —3.72 —-6.55
32 2.41 13,804 3.14 223 14,083 3.26 7.46 -2.02 -3.82
64 31 51,885 16.12 2.86 50,517 16.58 8.03 2.63 -2.85

24 23 22 21 20 19 18 17
32 31 30 29 28 27 26 25
40 39 38 37 36 35 34 33
48 47 46 45 44 43 42 41
56 55 54 53 52 51 50 49
65 64 63 62 61 60 59 58 57
(a)
6564 56 48 40 32 24 8 7 6 5 4 3 2 1 0
63 55 47 39 31 16 15 14 13 12 11 10 9
62 54 46 38 23 22 21 20 19 18 17
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51 50 49
58 57
()

6564 56 48 40 32 24 8|7 6 5 4 3 2 1 0
63 55 47 39 31 16|15 14 13 12 11 10 9
62 54 46 38 23|22 21 20 19 18 17
61 53 45 30 (29 28 27 26 25
60 52 37 36 35 34 33
59 44 |43 42 41
51|50 49 Part2
58 | 57

Partl

(©)

FIGL-JRE 2: Partitioning the partial products: (a) partial-product array diagram for 8 * 8 multiplier, (b) an alternative representation, and (c)
partitioned structure of multiplier showing part0 and partl.



TaBLE 3: Partitioned HPM performance.
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Regular HPM multiplier with CLA

Partitioned HPM multiplier with CLA

Performance comparison (%)

pO[10] poLo9) pO[&] pl pv

FIGURE 3: Reduction of the partial products of part0 based on the HPM reduction approach.

Word size Delay (ns) Area (1,¢m2 ) Power (uW) Delay (ns) Area (ymz) Power (uW) Delay Area Power
3,848 0.63 1.72 4,025 0.67 1.71 -4.59 -6.34
13,817 3.16 2.36 14,173 3.33 4.80 -2.57 -5.37
51,912 16.35 2,99 50,673 16.72 5.97 2.38 -2.26
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FIGURE 4: Reduction of the partial products of partl based on the HPM reduction approach.

and overhead in delay, area, and power of the partitioned
multipliers with respect to the unpartitioned multiplier.

It can be seen that there is 4.3% improvement in the speed
for 16-b and 11.2% for 64-b size. The speed limitation in lower
bit size multipliers is due to the greater difference between
input arrival profile to the final CPA from part0 and partl.
But with the increase in the word size, this difference becomes
lesser and the improvement in the speed of the partitioned
multipliers increases. There is maximum of 11%, 8%, and 6%

speed improvement for 64-b W, D, H Baugh-Wooley multi-
pliers with 1% area overhead. Having clearly demonstrated
the reduction in the delay of the multipliers due to the par-
titioning of the partial products, we now proceed to further
enhance the speed of the proposed multiplier. There is maxi-
mum of 6% to 7% power overhead in W, D, H based Baugh-
Wooley multiplier, and this is due to the use of CLA as CPA in
each part. But this power overhead is interestingly reduced by
proposed hybrid CPA which is elaborated in the next section.
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FIGURE 5: The HPM-based implementation: (a) implementation of part0; (b) implementation of partl.
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BEC adder
p1[10:8]  po[10:8] pl7:0]
3 3
3-bit RCA »
3
2
p[10:8] pl7:0]

F1GURE 6: Hybrid final adder of 8-b multiplier.

3. The Hybrid Final Adder Design

In previous works, the hybrid final adder designs used to
achieve the faster performance in parallel multipliers were
made up of CLA (carry lookahead adder) and CSLA (carry
select adder) [12, 13]. But due to the structure of the CSLA, it
occupies more chip area and power than other adders. Thus to
achieve the optimal performance, the proposed hybrid adder
in this work uses BEC logic for fast summation of uneven
input arrival time of the signals originating from the PPST.
The BEC adder provides faster performance than carry save
adder (CSA) and it consumes less area, low power than the
carry select adder (CSLA) [14, 15].

3.1. Hybrid Adder for 8-b Multiplier. Once each part of the
partial products has been reduced to height of one bit column,
we get the final partial products as follows:

p0[10] pO[9] pO[8]
p7 p6 p5 p4 p3 p2 pl p0
pl[15] pl1[14] p1[13] P1[12] p1[11] p1[10] p1[9] p1[8].

The p0[10:8] are the exceeding carry bits of part0 and
p1[15] is the carry bit of partl. The p[7:0] of part0 are directly
assigned as the final products. To find the remaining p[15:8],
we use the RCA and the BEC as shown in Figure 6.

The p0[10:8] and p1[10:8] are added using 3-bit RCA
which finds p[10:8]. To obtain the remaining p[15:11], the
pl1[15:11] are assigned to the input of 5-bit BEC, which produce
the two partial results p1[15:11] with Cin of “0” and the 5-
bit BEC output with the Cin of “1” Depending on the Cout
of RCA (c[10]), the mux provides the final p[15:11] without
having to ripple the carry through p1[15:11].

The 8-bit multiplier uses a 5-bit BEC in the final adder,
but for the large bit sized multipliers requires multiple BEC,
and each of them requires the selection input from the carry
output of the preceding BEC. Therefore, to generate the carry
output from the BEC, an additional block is developed which
is called BECWC. The detailed structures of the 5-bit BEC
without carry (BEC) and with carry (BECWC) are shown in
Figures 7(a) and 7(b). The BEC gets n inputs and generates
n output; the BECWC gets n input and generates n + 1
output to give the carry output as the selection input of the
next stage mux used in the final adder design of 16-b, 32-b,

TABLE 4: Function table of 5-BIT BEC and BECWC.

Input BEC without carry BEC with carry

b[4:0] x[4:0] cy x[4:0]

00000 00001 0 00001
11110 11111 0 11111
11111 00000 1 00000

and 64-b multipliers. The function table of BEC and BECWC
is shown in Table 4.

3.2. Variable-Size Hybrid Adder. The variable size of adder
blocks always leads to faster performance than a fixed-size
block adder [2, 17]; we, therefore, break down the ripple of
gates in the BEC into variable-size groups according to the
log,n method. Based on this approach, the final adder designs
for 16-b, 32-b, and 64-b multipliers are shown in Figure 8.

In BECWC, the mux is getting #n-bits of data input as it is
input for selection input “0” side and n + 1-bits of data input
from the BECWC output for selection input “1” side. Thus to
make equal size of the inputs to the mux, the one-bit “0” is
appending with the #-bits of the data input as “MSB” (most
significant bit).

To analyze independently the effect of the proposed
hybrid adder, the partitioned multiplier with CLA final adder
is compared with the partitioned multiplier along with the
proposed hybrid adder. The simulation results of partitioned
W, D, H Baugh-Wooley multipliers with hybrid CPA are listed
as first column in Tables 5, 6, and 7. The performance of
hybrid CPA (comparison between the partioned multipliers
with CLA and partitioned multipliers with hybrid CPA) and
overall performance of proposed techniques (comparison
between unpartitioned multiplier with CLA and partitioned
multiplier with hybrid CPA) are listed as second column
and third column, respectively, in Tables 5 to 7. The result
analysis clearly shows that the speed increases with the word
size of the multiplier. The hybrid CPA improves the speed
of the W, D, H Baugh-Wooley multipliers by 19%, 20%, 15%,
respectively, for 64-b size without area and power overhead.
The overall improved performance is elaborated in result
summary.

4. ASIC Implementation and
Simulation Results

The ASIC implementation of the proposed design follows the
cadence design flow. The design has been developed using
Verilog-HDL and synthesized in Encounter RTL compiler
using typical libraries of TSMC 65nm technology. The
Cadence SoC Encounter is adopted for Placement & Routing
(P&R) (Encounter User Guide 2008). Parasitic extraction is
performed using Encounter Native RC extraction tool. The
extracted parasitic RC (SPEF format) is back annotated to
Common Timing Engine in Encounter Platform for static
timing analysis.



VLS| Design Handbook

TasBLE 5: Improved performance by hybrid CPA and overall performance in Wallace multiplier.

Partitioned Wallace multiplier with hybrid CPA
Word size Delay (ns) Area ([,tmz)

Performance of hybrid CPA

Opverall performance

Power (uW) Delay Area Power Delay Area Power
16 1.58 4,137 0.71 10.22 -1.07 -2.89 14.13 -3.86 -7.57
32 1.98 14,758 3.39 13.91 -0.63 -1.80 21.42 -2.50 -5.60
64 2.35 54,225 17.28 19.52 0.41 0.34 28.57 -0.61 -2.49
ba b3 b2 bl bo b4 b3 b2 bl b0
b4 b3 b2 bl b0 b4 b3 b2 bl b0
>
x4 x3 xi %xlf/ x0 Cout x4 xé x2 x1 x0
;!:l x3 ;(LZ xl  x0 Cout x4 x3 x2 xI x0
(a) (b)
FIGURE 7: The 5-bit Binary to Excess-1 Code Converter: (a) BEC (without carry); (b) BECWC (with carry).
p1[31:24] p1(23:20] pll19:16]  p0[19:16] pl15:0]
8 4
b
8-bit BEC 4-bit BECWC : 4-bit RCA 16/
8 8 sp %
4
g v
p[31:24] < c[23)i p[23:20] pl19:16] pl15:0]
(a)
p[63:49] p148 ; 41] p1(40:37) pl[36:32]  p0[36:32] pl31:0]
8 5 5 i
0 0
8-bit BECWC Ly 4-bit BECWC b 5-bit RCA 32y
L 9,/ 5y 5,/
30:15 mux 0 18:9 mux 0 10:5 mux 0 5
9 5
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L (48}, p[48:41] <[40}, p[40:47] pl36:32] p[31:0]
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0 0 - ,
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FIGURE 8: Hybrid final adder: (a) for 16-b multiplier, (b) for 32-b multiplier, and (c) for 64-b multiplier.



