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PREFACE

Ion channels are the fastest cellular signaling system, underlying rapid
processes such as axon conduction and synaptic transmission. However,
ion channels are also found in nonexcitable cells and are indispensable for
processes such as secretion, gene expression, and cell division. With over
140 members, ion channels are the second largest family of signaling
molecules in the body and are activated by a diverse range of stimuli such
as ligands, membrane voltage changes, temperature, stretch, and changes
in pH. As “first responders,” a detailed understanding of ion channels is
crucial to understanding how cells initially respond to changes in their
environment.

There have been spectacular advances in this area in the past two
decades, highlighted by the award of the 2003 Nobel Prize in Chemistry
to Roderick MacKinnon for his determination of the 3D structure of a
voltage-gated potassium channel. Despite the recent leaps and bounds
of progress made in the area of ion channel structural biology (e.g.,
cryo-EM), it is our ability to selectively modulate ion channel function
in vitro and in vivo that holds the key to unlocking the physiological
and pathological roles of ion channels. To this end, high-quality ion
channel pharmacology will provide the tools and therapeutic leads to
address many unmet medical needs. The chapters in this volume demon-
strate that the momentum has not changed and, indeed, has increased.
Whether dissecting the activation of ryanodine receptors, describing
the development of subunit-selective ligands for glycine and GABA
receptors, or the contribution of calcium imaging in high-throughput
identification of drug leads, the contributors have used state-of-the-art
techniques and provided narratives and insights that will generate new
ideas for years to come.

We wish to thank the many contributors to this volume. They have
covered the pharmacology and role of a large number of channels in health
and disease, and included some uniquely Australian research, such as
employing peptides from our (many) venomous animals. You will no doubt

xi



Xii Preface

agree that Ion Channels DownUnder demonstrates the depth and breadth of
excellent research being undertaken on the pharmacology ion channels

around Australia.
DomiNic P. GERAGHTY, PhD

School of Health Sciences, Faculty of Health,
University of Tasmania, Launceston, Australia
LacHLAN D. RasH, PhD

School of Biomedical Science, Faculty of Medicine,
University of Queensland, Brisbane, Australia
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CHAPTER ONE

GABA, Receptors and the
Diversity in their Structure
and Pharmacology
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Abstract

GABA, receptors (GABAARs) are a class of ligand-gated ion channels with high physio-
logical and therapeutic significance. In the brain, these pentameric receptors occur with
diverse subunit composition, which confers highly complex pharmacology to this
receptor class. An impressive range of clinically used therapeutics are known to bind
to distinct sites found on GABAARs to modulate receptor function. Numerous experi-
mental approaches have been used over the years to elucidate the binding sites of
these drugs, but unequivocal identification is challenging due to subtype- and
ligand-dependent pharmacology. Here, we review the current structural and pharma-
cological understanding of GABAARs, besides highlighting recent evidence which has
revealed greater complexity than previously anticipated.

Advances in Pharmacology, Volume 79 © 2017 Elsevier Inc. 1
ISSN 1054-3589 All rights reserved.
http://dx.doi.org/10.1016/bs.apha.2017.03.003
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ABBREVIATIONS

CS read counter-clockwise when viewed from the extracellular side

> 1. INTRODUCTION

y-Aminobutyric acid (GABA), the major inhibitory neurotransmitter

in the mammalian central nervous system (CNS), is the conductor of an
intricate inhibitory orchestra fundamental to the harmonious coordination
of brain function. The inhibitory effects of GABA rely on two types of
receptors—the fast-acting, Cl™-conducting ionotropic GABA, receptors
(GABAARs) and the slower-acting, G protein-coupled metabotropic
GABAg receptors (GABAgRs) (Note: GABA- and GABAR-mediated
actions may be excitatory under certain circumstances, but these actions
are not discussed in this chapter). GABAARs are ubiquitously expressed
throughout the mammalian CNS and have indispensable physiological roles
emphasized by a few lines of evidence. First, the mutation or deletion of var-
ious genes encoding for GABAAR subunits in mice is highly disruptive to
the normal phenotype, causing developmental defects, sensorimotor dys-
function, hypersensitive behavior, anxiety, epilepsy, and/or reduced lifespan
(DeLorey et al., 1998; Gunther et al., 1995; Homanics et al., 1997; Vien
etal., 2015). Second, aberrant GABA,R trafficking, expression and/or gat-
ing effects have been implicated in autism (Fatemi, Reutiman, Folsom, &
Thuras, 2009), schizophrenia (Mueller, Haroutunian, & Meador-
Woodruft, 2014), and a range of idiopathic epileptic syndromes (Hirose,
2014) in humans. Furthermore, genetic association studies have also linked
GABA,R subunit genes with alcohol dependence (Li et al., 2014), eating
disorder outcomes (Bloss et al., 2011), autism (Collins et al., 2006; Ma
et al., 2005), and bipolar disorders (Ament et al., 2015; Craddock et al.,
2010).

GABARs are also important drug targets, as evidenced by the successful
clinical utilization of GABA R modulators in the treatment of CNS-related
disorders such as insomnia, anxiety, and epilepsy, as well as in the induction
of anesthesia in surgical patients (Sieghart, 2015). While clinically useful, the
misuse of these drugs poses risks of dependence, addiction, abuse, and life-
threatening conditions associated with overdose or withdrawal. Hence,
understanding the functions of GABARs and the underlying mechanisms
of the clinical and undesirable effects of GABAAR-targeting drugs to
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improve the selectivity and safety of these therapeutics are topics of intensive
research (Atack, 2010; Rudolph & Knoflach, 2011). However, the striking
structural and functional heterogeneity of these channels pose major chal-
lenges in the study of GABAARS. In this chapter, we provide an overview
of the structure and pharmacology of GABAARs. We also discuss recent evi-
dence which highlights the potential for greater diversity in GABAR phar-

macology due to subunit stoichiometric and arrangement differences.

2. ARCHITECTURE OF GABAARs

GABAjRs are members of the pentameric ligand-gated ion channel
(pLGIC) superfamily, which includes the nicotinic acetylcholine receptors
(nAChRs), 5-hydroxytryptamine type 3 receptors (5-HT3Rs), and glycine
receptors. These receptors are made up of five homologous subunits that
surround a central ion-conducting pore, a structure which is often likened
to a barrel with five staves. Each receptor subunit has an extracellular domain
(ECD), a transmembrane domain (TMD), and an intracellular domain
(ICD). The ECDs are mostly made up of f-sheets and contribute to agonist
binding sites, whereas the TMDs consist of the pore-forming a-helices and
the structurally variable ICDs are involved in receptor assembly, trafficking
and clustering.

The recent determination of a three-dimensional crystal structure of the
B3 homomeric GABAAR captures structural details at 3A resolution
(Miller & Aricescu, 2014). This receptor subtype is unlikely to be physio-
logically relevant, but its functional expression in heterologous systems is
well known, and has been used as a model to study heteromeric GABAARs
(Taylor etal., 1999; Yip etal., 2013). The receptor stands approximately 110 A
in height when viewed parallel to the membrane (Fig. 1A). The five subunits
assemble in a doughnut-like shape with a diameter around 80 A, when viewed
from the extracellular space, down the channel pore (Fig. 1B). The large ECD
(~65A in height) of each subunit is made up of an N-terminal a-helix
followed by a B-sandwich core with 10 antiparallel f-sheets (Fig. 1C). The
TMD consists of four membrane-spanning a-helices (M1-M4), with the
M2 helices of all five subunits arranging themselves to form a tapered
ion-conducting pore (Fig. 1B and C). The outermost M4 helix harbors the
C-terminus on the extracellular end. The ICD contains a small M1-M2 loop
and a much larger M3-M4 loop (G333-N446; residue numbering follows
sequence of P28472 in UniProt) which was replaced with a 7-amino acid
linker for the crystallization of this structure (Fig. 1C).
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Fig. 1 The crystal structure of a human 3 homomeric GABAAR (PDB: 4COF). (A) Cartoon
representation of GABAAR viewed parallel to the membrane, colored according to sec-
ondary structures (x-helices are in red except for the pore-forming helices (orange),
B-sheets are in blue). (B) Left, GABAAR viewed from the extracellular space, with the five
subunits labeled 1-5. Right, Transmembrane region of GABAAR, with the ECDs simplified
as blue ovals for clarity. The arrangement of the four TMDs (M1-M4), the C-terminus
(purple circles), and the M2—M3 loop (green) are illustrated. (C) Topology of a single sub-
unit of GABA4R, rainbow colored from the N-terminus (red) to the C-terminus (purple).
The p-sheets of the ECD, the a-helices of the TMDs, the characteristic Cys-loop, and other
relevant loops are indicated. Note: the intracellular M3—-M4 loop (G333-N446) was
replaced with a 7-amino acid linker for crystallization. Figures were prepared using
Maestro, v. 9.5.014, Schrodinger, LLC.

3. GABAAR ASSEMBLY: SELECTIVE SUBUNIT
OLIGOMERIZATION

Human genome sequencing has identified at least 19 GABAAR sub-
unit genes (a1-6, p1-3, y1-3, §, €, 6, w, and p1-3). Given the heteromeric
nature of GABAARS in vivo, this long list of subunits, together with the
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splice variants of some of the subunits allow for an enormous range of the-
oretically possible subunit combinations. Yet, experimental evidence sug-
gests that only a few dozen combinations exist in vivo (see Section 4),
indicating that GABAAR assembly is a selective, and not a random
process. A hierarchical assembly mechanism has been proposed, in which
certain subunits are preferred over others to form dimeric intermediates that
ultimately assemble into pentameric complexes (Sarto-Jackson &
Sieghart, 2008).

Different methods have been used to define the rules underlying receptor
assembly. In concert, data obtained using functional, immunoimaging, and
sucrose gradient centrifugation techniques suggest that both & and f subunits
are obligatory for the surface expression of fully functional pentameric
receptors in heterologous cell systems (Angelotti, Uhler, & Macdonald,
1993; Connor, Boileau, & Czajkowski, 1998; Gorrie etal., 1997). The addi-
tional third y subunit has been shown to enhance the efficiency of receptor
assembly (Tretter, Ehya, Fuchs, & Sieghart, 1997). In contrast, the recom-
binant expression of individual a, §, and 7y subunits, and the oty and fy com-
binations mainly yielded di-, tri-, and tetrameric oligomers which were
retained in the endoplasmic reticulum (Connolly, Krishek, McDonald,
Smart, & Moss, 1996; Gotrie et al., 1997). There are a few notable excep-
tions, however, with the homomeric f1 and 3 and the heteromeric f3y2
receptors expressing readily in heterologous systems (Chua, Absalom,
Hanrahan, Viswas, & Chebib, 2015; Sanna et al., 1999; Taylor et al.,
1999; Wooltorton, Moss, & Smart, 1997).

Amino acid residues important for assembly have been identified in sev-
eral studies using the chimeric receptor and site-directed mutagenesis
approaches (Sarto-Jackson & Sieghart, 2008). These residues are found
mainly in the ECD, and to a lesser extent in the intracellular M3-M4 loop.
In accordance with these data, the f3 GABAAR crystal structure revealed
extensive energetically favorable interactions such as hydrogen bonds, salt
bridges, and van der Waals forces along the interfaces between subunit
ECDs (Miller & Aricescu, 2014). Disruption to these interactions could
affect receptor assembly, and may be the reason for impaired GABAAR sur-
face expression with epilepsy-associated mutations found in the N-terminal
regions such as P3G32R and y2R43Q (Frugier et al, 2007; Gurba,
Hernandez, Hu, & Macdonald, 2012; Sancar & Czajkowski, 2004).

While considerable insights have been provided by these studies, the
molecular determinants could not be firmly established for several reasons.
First, these determinants differ depending on the partner subunits.
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For example, four residues in the ECD of the B3 subumt (G171, K173,
E179, and R180) have been identified to be critical for the assembly of
B3 and P3y2 receptors, but they are not compulsory for the assembly of
aff receptors (Taylor et al., 1999). In another study that investigated the role
of the N-terminal regions in the expression of a1p2y2 GABARs, subunit-
specific contributions to receptor assembly were found (Wong, Tae, &
Cromer, 2015). When deleted, the N-terminus of the al subunit had the
most prominent effect on the expression of al2y2 receptors, whereas dele-
tion in similar regions of the $2 and y2 subunits had minimal effect on surface
expression. Second, multiple residues may be involved in oligomerization
with the same neighboring subunit (Sarto et al., 2002). As such, when a
putative binding residue is mutated and has no effect on receptor expression,
it does not necessarily indicate no participation in intersubunit linking.
Conversely, an expression-impairing mutation does not validate its signifi-
cance in subunit oligomerization, as the residue may indirectly contribute to
this process (e.g., by stabilizing interacting regions). All in all, GABAAR
assembly is a highly complex, multistep process which involves subunit-
specific determinants that govern the subunit composition of GABAARS
found natively.

4. MULTIPLE SUBTYPES, LOCATIONS, AND ACTIONS
OF GABA,Rs

In recent years, it has become evident that the multiplicity in
GABAAR subunit composition (or subtypes) is one of the main reasons

for the heterogeneity observed in their cellular and subcellular distributions,
biophysical characteristics, pharmacological properties, in addition to phys-
iological functions (Farrant & Nusser, 2005; Jacob, Moss, & Jurd, 2008;
Rudolph, Crestani, & Mdhler, 2001). Furthermore, the subunit composi-
tion of GABAARS is plastic. Alterations in brain GABAAR subtypes have
been reported under various developmental and pathological conditions
(Brooks-Kayal, Shumate, Jin, Rikhter, & Coulter, 1998; Fritschy, Paysan,
Enna, & Mohler, 1994; Steiger & Russek, 2004). As such, answering the
question “which GABAAR subtypes actually occur in vivo?” is essential
to understanding the diverse roles played by GABAergic inhibition.
Currently, existing experimental techniques are unable to unequivocally
identify GABAAR subunit composition in neurons. To help determine the
likelihood of a receptor subtype being expressed physiologically, the
[UPHAR committee has introduced five classification criteria (Olsen &



