


HANDBUCH DER PHYSIK

HERAUSGEGEBEN VON
S. FLUGGE

BAND XXVII
SPEKTROSKOPIE 1

MIT 133 FIGUREN

SPRINGER-VERLAG
BERLIN - GOTTINGEN . HEIDELBERG
1964



Alle Rechte, insbesondere das der Ubersetzung in fremde Sprachen, vorbehalten.

Ohne ausdriickliche Genehmigung des Verlages ist es auch nicht gestattet, dieses
Buch oder Teile daraus auf photomechanischem Wege (Photokopie, Mikrokopie)
oder auf andere Art zu vervielfiltigen.

© by Springer-Verlag OHG / Berlin - Gottingen - Heidelberg 1964
Library of Congress-Catalog-Card Number A 56-2942
Printed in Germany

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw.

in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der

Annahme, daB solche Namen im Sinn der War ich und Mark hutz-

Gesetzgebung als frei zu betrachten wiren und daher von jedermann benutzt
werden diirften.

Druck der Universititsdruckerei H, Stiirtz AG., Wiirzburg



Inhaltsverzeichnis.

Seit:
Line Width. By R. G. BREENE jr., President of Physxcal Studies, Inc., Centervﬂle/Ohlo -
(USA). (With 19 Figures) . . . s 1
A.. ‘Early line broadening theory . .« « o & =« » % 5 & = 2 5 & & & 5 @ & o = = = 1
B. Interroption broadening « « v & o o @ & 5. & B 5 v s s om e e e 3w s v
C. Statistical broadening . . . . . . . . . . . . . . .. ... .. ..... 20
Iy, STARK Droadenitig » « & w o % % 5 5 & s & 5% & 5 & @ @ & & 5 b w6 nw 20
E. Resonance broadening . . . . . . . . . . . . . . ... .. .. ..... 43
F. Molecular broadening . . . . . R T R PO < 4
G. The broadening and shift of the hlgh series membere i B m s om RS e a s 2
H.The natural ine Shape « = « : 5 & ¢ © 5 & @ % & 5 & & =5 5 o o % = & & o s V7
General TEIeTeNCeS i « o s v o 4 w @ v oW oW v o @ F @ B oW G W W s e & 7O
Atomic Spectra. By BENGT EDLEN, Professor of ths:cs Univ: ersxty of Tund (chden)
(With 80 Figures) . . . % 5 : 80
INMrOQUCHON & & 5 1 B 7 B v e wm oa e a s e W Eom oW & owm BB M e B % s ow s 30
I. Basic concepts 5 % & V= w2 oW i w s B4
II. Relative term values of many- electron conf1gurat10ns o w o A o@ w s @ s 99
III, Absolute term values; properties of Rydbergseries . . . . . . . . . . . 123
TV: IsoelectroniC SEGUENCES . « « « » & m & @ © © & 5 = & 5 = o & 5 o & o 147
V. Regularitiesalong periods . . . . . . . . . . . . ... ... ....20
Spectroscopie électronique moléculaire. Par Borrs RoOsEN, Charge de Cours Associé A
I"Université de Li¢ge (Belgique). (Avec 34 Figures) . . . . o & w B w o 224
A. Spectroscopie électronique théorique . . . . . . . . . . . . .. .. ... 221
I. La molécule Hf . . . . " : v = 222
II. Introductiona la spectroscopxe des molccules dlatomlques a plusxeurs electrons 242
III. Méthode des orbitales moléculaires . . . . . . . . . . . . . . . . . . 267
a) Remarques préliminaires . . . o b e ow @ o w0 207
b) Utilisation des orbitales moléculaxres du type LC‘ AO o mowE W s s B s O
c) Développementsrécents . . . . . . . . . . . . . . . . ... .. 281
IV. Interactions entre les mouvements électroniques et nucléaires . . . . . . 299
a) Introduction . . . . v ¢ & % n 299
b) Interaction entre les mouvements des électrons et la v1bra.tnon s i 303
c) Interaction entre les mouvements des électrons et la rotation des molé~
cules diatomiques . . . 312
d) Interaction entre les électrons et la. rotatxon dans le cas des molécules poly-
atomiques . . . . . Y E e = « 318
V. Problémes relatifs a la symétne moléculaire . . . . . . . . . . . . . . 320
a) Molécules diatomiques . . . . . . . .« . . . . .0 e e e s . . . 0. 322

b) Molécules polyatomiques . . . . . . . . . . . . . . . . . . . .. 324



Vi Inhaltsverzeichnis,

VI. Transitions radiatives entre états électroniques moléculaires . . . . . . . 83‘:';:
a) Molécules diatomiques . . . . . . . . . . . . . .. . .. ... . 335
b) Molécules polyatomiques . . . . . . . . . . . . . . . ... . . . 348
V1I1. Perturbations et transitions non-radiatives . . . . . . . . . . . . . . 361
B. Spectroscopie électronique expérimentale . . . . . . . . . . . . ..., 385
I. Structure des spectres moléculaires . . . . . . . . . . . ., . . ... . 383
II. Méthodes d’analyse . . . . . . . . . . A . . 389
a) Molécules diatomiques . . . . . . . . . . . . . . . .. ... .. 38
b) Molécules polyatomiques . . . . ... . s e e e e s e e 44D
III. Probabilité de transition. Problémes d’intensité . . . . . . . 446
Annexe 1. Potentiels d’ionisation moléculaires déterminés spectroscopxque-
ment. Par W. C. Price (Londres, Angleterre) . . . . . . .. . . . .. 453
Annexe II. Spectres des radicaux moléculaires en phase gazeuse Par
K. WirranD (Bile, Suisse) : . : o < o ce o s o 5 o & & o s . 455
Annexe III. Probabilité absolue de quelques transitions moléculaires électroni-
ques. Par F. W. DaLBY (Vancouver, Canada) . . . . . 464
REFETOTCES .« ' o v s s o .s & & & ® @ & & o & 3 & i o 5 wow s ow ow s w % 468
Sachverzeichnis (Deutsch-Englisch) . . . . . . . . . 5 5 e m s e v owd @ s 475
Subject Index (English-German) . . . . . . . . . « .« . v . . .. s o & % « » 488

Index (Franchi8) . . « « o & & » % 0 s 0 o 5 0 o o 68 8 0% v o 5 & & & & 5 o 500



Line Width.

By
R. G. BREENE jr.

With 19 Figures.

A. Early line broadening theory.

1. The bases for line broadening. It would seem that three avenues of ap-
proach to the problem of line width are open to us. First we might consider the
historical aspects of the problem through a short study of the early attempts
at description of the phenomena involved. Or we might instead begin with a
qualitative description of the various conditions under which a line is broadened.
Finally the early work of MICHELSON in organizing this: field and developing
certain phases of it was so successful that as a third alternative we are allowed
the fortunate choice of a combination of the first two. Consequently our decision
is not long in doubt.

Whether one considers the radiation-emitting atom as a classical oscillator
or a quantum system possessed of discrete energy levels, one would at first be
led to expect the emission of homogeneous radiation. Instead of this one finds
the spectral line of definite width and shape, and it was toward a complete
explanation of the causes of this phenomenon that MicHELSON [9] turned his
attention in 1895.

MICHELSON began by summarizing the hypotheses which had previously been
advanced as explanations of this phenomenon, namely,

1. KIRCHHOFF’s law has as a consequence that two immediately contiguous
portions of a bright line spectrum will have a decreasing ratio of brightness with
an increasing path length in the absorbing or emitting gas.

2. Neighboring atoms will cause a direct modification of the period of the
vibrating atoms.

3. The radiating away of energy by the oscillator will result in an exponential
decrease in the vibrational amphtude

- 4. The DopPPLER effect arising from the translational velocity cbmponent
in' the line of sight will result in a change in the wavelength of the emitted
radiation. .

To these causes of line broadening MicHELSON added the following:

5. Collisions with other atoms will cause a limitation of the number of regular
vibrations by rapid changes of phase amplitude or plane of vibration.

6. Differences may exist in atomic properties which differences are so slight
as to escape detection by other than spectroscopic means.

Now by a utilization of this rather historical compilation we may describe
the various fashions in which a line is broadened.

We begin by removing our emitting atom to an infinite distance from all
other atoms and reducing its effective temperature so that the atom is at rest.
Under these conditions a spectral line emitted by this atom displays its ““natural”’
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2 R.G. BREENE jr.: Line Width. Sect. 2.

shape. This natural line shape is due, in the classical sense, to precisely the
effect given by MicHELSON as his third broadening agency. We shall discuss
the phenomenon in a great deal more detail.

Next we raise the effective temperature of the atom, thus giving it some
finite translational velocity. A given velocity component in the line of sight
will result in a change in the frequency of the emitted radiation according to the
well-known DoPPLER effect. A Maxwellian distribution of velocities will lead
us to expect, for a given temperature, various velocities with various probabilities.
As a consequence, the shifted frequencies corresponding to those velocities will
be expected with varying probabilities, and a particular spectrum of frequencies
of a certain width will then be anticipated for a given temperature.

These natural and DoPPLER effects may be expected to prevail in the absence
of any neighboring atoms but, for the additional broadening effects present in
any gaseous assembly, we must bring in these neighbors frem infinity. Having
done so, we look to MICHELSON’s second and fifth effects to explain the additional
line broadenings which will result. Indeed it is well we do so, for any other reasons
for the broadening of spectral lines by neighboring atoms have yet to be advanced.

As we shall see in more detail, the two general theories which dominate the line
broadening field are the Statistical and Interruption theories. 1t is true that these
have been modified, correlated, joined, separated, limited, and smeared, but
the statement remains approximately valid. Thus, it is interesting to note that
the second of our listed factors forms the basis for the Statistical Theory and the
fifth of these factors the basis for the Interruption Theory. That we have here
the basis for the Interruption Theory should come as no great surprise since the
father of this theory is, of course, MICHELSON.

In the Statistical Theory we shall see quantum energy levels distorted by
interaction with atomic neighbors so that a shifting of the emitted frequencies
and a broadening of the spectral line results. The classical analog of this pheno-
menon is MICHELSON’s cause two. :

We shall detail MiCHELSON’s first presentation of the Interruption Theory
after a brief consideration of the DoPPLER effect. Let us first remark, however,
that the sixth listed factor, although MICHELSON’s shrewd prediction of isotopic
spectra, is a form of pseudo-broadening—as is the first factor—which would be
out of place in this treatment.

2. The DOPPLER effect in line broadening. The DOPPLER effect in line broaden-
ing was originally developed by RAYLEIGH [10] in 1889. EBERT! had considered
the problem with all the molecules of the gas moving with the same velocity,
but had ended by predicting lines of much greater width than those actually
observed. This led RAYLEIGH to a consideration of the problem, as much in
defense of the kinetic theory as in search of an explanation for line broadening.
Instead of a constant velocity RAYLEIGH chose a Maxwellian distribution for
the velocities. In this lay the difference.

Let us recall that a wavelength shift from 4 to 4’, where
, 3
e /1(1 - —c-) (2.1)

takes place in the radiation due to an emitter velocity component & in the line
of sight.
Eq. (2.1) may be rewritten as
. £2 = 22(A )2 _ (2.2)
1 H. EBerT: Ann. Physik 36, 466 (1889).
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where Av is the frequency separation from the frequency of the emitted radiation
for £=0.
Accordingly then, the distribution of frequencies in the spectral line will be
given by the Maxwellian distribution:
= 5y _ mAr—rg)?
I(v) =1Iye 2kT° =1Ige 2T | (2.3)
where now I, is a constant equal to the intensity at line center where v=v,.

Now let us define a quantity “half-width” as twice the frequency separation
from line center of that frequency for which the intensity of the radiation has
fallen to one half its maximum value. For the DopPPLER broadening then, an
inspection of Eq. (2.3) tells us that the half-width, 4, is given by

8=>]/2" log2. (2.4)

3. The MICHELSON treatment of interruption broadening. We can return now
to MicHELsON’s fifth broadening factor and the manner in which he introduced
what we shall call the Interruption Theory of Broadening by his utilization of
this factor.

We begin, with MicHELSON, by considering the emitting atom as moving
among its neighbors and undergoing the collisions which would be expected when
impenetrable spheres are taken as atomic models. We suppose these collisions
to so change the phase that there is no coherence between the radiation emitted
just prior and just subsequent to one of these collisions. For our purposes then
we may consider the emission of a wave train terminated by a collision. The
picture that then emerges of this interrupted emission phenomenon is as follows:

A collision has just been undergone by the emitter, and it now begins the
emission of an electromagnetic wave of its natural frequency—in the case of
our classical oscillator model, the frequency of its normal vibration. The atom
continues to emit the wave train of the same frequency until it undergoes its
next collision at which time this radiation is abruptly terminated. If the time
between the collisions is taken as 7, then a wave train of frequency, say, v,,
and length ¢z has been emitted. We now perform a FOURIER analysis of this
finite wave train to obtain our interruption broadened spectral line.

We shall not write down here the mathematics of MiCHELSON’s derivation
since this should more properly be consigned to the specific chapter on inter-
ruption broadening. We might remark briefly on the FouRriER transform for
our present purposes.

Now the FOURIER transform has for its basis the fact that any function may
be represented by the judicious choice of imaginary exponential functions, the
method of rendering the choice judicious being the FOURIER transform. Each
of these imaginary exponential functions, on the other hand, represents a wave
train of infinite extension. Thus, in applying the FOURIER transform to a wave
train of frequency v, and finite extent we are simply building up the finite train
from an infinite number of infinite trains, each of which differs very slightly in
frequency from its nearest neighbor—frequencywise. Varying proportions, one
might say, of the various infinite trains are needed in building up our finite
train. Ifor example, one might expect that the infinite train present in greatest
proportion would be the train of frequency »,, the frequency of the cut-off wave
train. The mixing proportions of the various trains are adjusted by adjusting
the amplitudes of the waves involved. Thus, the intensity of a radiation fre-

quency in the final, broadened spectral line will be proportional to the square
1%
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of the requisite amplitude, that is, the square of the mixing proportion for the
infinite wave train of that frequency.

After this fashion then, one is able to obtain a line of definite width by
terminating emission at collision and performing a FOURIER transform of the
cut-off emission. In this manner MICHELSON obtained

sin? [m T (v — )]
Iy =6 —gp 5 (3-1)

MicHELSON used the value of 7 obtainable from the mean free path and the
mean atomic translational velocity. If we should now average Eq. (3.1) over a
distribution of 7’s, the resulting line shape would correspond to that obtained
some ten years later by LORENTZ.

4. The LoReNTZ theory. The LoRENTZ derivation (4] of a spectral line shape
is of contemporary interest primarily from a historical viewpoint, although it
does provide the unique example of the obtention of a line shape by a classical
study of the mechanics of absorption of radiation by a v1bratmg electron. Es-
sentially we do the following.

First an expression is obtained for x, the vibrational coordinate of an atomic
photoelectron, in the presence of an external electromagnetic field. As we
may recall, the vibrations of the bound photoelectron of an atom provide
the mechanism for the emission and absorption of electromagnetic radiation by
an atom in the classical picture. Now in the resulting equation for x certain
boundary conditions are necessary for the evaluation of two constants which
appear. It is through these boundary conditions that the effects of collision first
enter. - Again the termination of radiation by collisions is assumed. Further,
it is supposed that, immediately subsequent to the last collision undergone by
the molecule under consideration, a random distribution such that

x=x=0 ‘ (4.1)

existed,. and the boundary conditions are thus furnished. Next, x is averaged
over a distribution of inter-coilision times, v. We are thus able to show that
collisions have the same effect on x as does the introduction of a damping force
into the original equation for x. Then the relevant MAXWELL equations are solved
to yield the absorption coefficient for the spectral line. Let us.detail this cal-

culation.
First -we shall show the equivalence between an atomic collision (in the

MICHELSON-LORENTZ sense) and a damping force.

The behavior of an electron acted on by a linear restoring force — f, a damp-
ing force — g #, and an external electric field E, = a¢f®* may be described classically

by the equation: :
m55=——-fx———g5z+eae’“" 4.2)
wherein ¢ is the electronic charge.
Eq (4.2) has the solution .
— . - %% - cjof
S m(wu—w)2+iwge_ . (4'3)
where wi=j/m is the natural vibrational frequency of the electron.

On the other hand, the removal of the damping force — gx results in an elec-

tronic equation S _
mi = —fx + caet®! (4.4)
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of solution
—— L . piwt @yt - m,t
x_m(w wz)e + C et  Cye™* (4.5)

It is for the evaluation of C; and C, that we must needs introduce boundary
conditions.

Now let us suppose that the last collision was experienced by our emitter
just before time ¢ — #. Then at time / — } we suppose there to have been a random
distribution of the x and # such that Eq. (4.1) held at the time. This condition
furnishes the equations for the evaluation of C; and C, with the result

%= m(ws . w’f e""'{1 ( ;’-)ei(w««w)a _ % (1 _ ﬂﬁ) e—~i(ﬂ’o+w)0} . (4.6)

The probability of a time & having elapsed since the last collision is —1— e—0r

where 7 is the average time between collisions. When Eq. (4.6) is av eraged over
this distribution, there results:

(Y = —— e g0F (4.7)
m (w% + 3,5 - (:)2) + 2 -Zyj &

T

A comparison of Egs. (4.3) and (4.6) suffices to tell us that the atomic collisions
have the same effect on the electroriic motion as a damping constant g=2m/z
and linear restoring force constant f,=j- —1"- .- Let us again consider Eq. (4.2).

A polarizable medium of polanzabxhty « adds the term eaB, to Eq. (4.2).
Further:
B =NexepPB =Nex

sc that we may now rewrite this equation as

v B =E,+aB — '—fi‘ B~ywak (4:8)
The assumptions |
Ex= EOx eiwi; E =PUX e'.m‘

lead to :
EOx == (5 + 1‘77) Pox (4.9&)
where
a 2
b=l —a— B8 =28 (4.9b)

Ne?

A complete description of the radiation field must, of course, include the
magnetic field and the propagation. We take the propagation direction as the
z-direction so that the exponential factor in the field vectors isnow exp [fw (t —¢z)]
and suppose that E=iE, and H=jH, MAXWELL’s equations then lead to
the relations

1 1 ;
¢H,=-D,; qE,=--H, (4.10)

which means that
D,=c*q*E, & F = (c*¢q*—1)E,. (4.11)
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A comparison of Egs. (4.9a) and (4.11) shows
1

P N (R L S
cP—1=x i (4.12)
Now surely one may write
1 —1 zw(t—zljl)
g=—pree ‘ (413)
which means that the field vectors are attenuated by the factor
wx
ol (4.14)
We substitute Eq. (4.13) into Eq. (4.12) with the result
22 _ /ET 0T , &
2T £2 4 2 + £ 4 ,72 = (415 a)
2yt E+ 12472 - £
= et b (4.15b)

The radical in Eq. (4.15b) is expanded according to the binomial theorem
and all terms after the third dropped as small with the result
c? y? 4n2 —4& —1

T R@E A 16

All terms save the #? in the denominator of this equation may be dropped

since 72> & for >>§, and when & ~ 7, the entire equation is small. The absorption
coefficient may then be obtained as

N m e? y2
P (_A ) L . B, (4.17)
ol r AL -
‘ . N s 4_:;_,,2

which may be displayed in a more familiar form.
Firstly the half-width of this distribution is given by

§=""y (4.18)
and the integrated absorption by
+o00
S= [tav,=2" N (4.19)
so that Eq. (4.16) may be rewritten as
S 6/2
0= S e 420

which is the more familiar form of the LoRENTz line shape equation.

Actually Eq. (4.20) attenuates the field vectors, and we are interested in the
attenuation of the energy. If we reinterpret S as the integrated absorption
coefficient for the energy when »x=2f, then we obtain Eq. (4.20) for x, the
absorption coefficient for the energy.
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B. Interruption broadening

5. Early quantum justifications of the FOURIER transform. After the
advent of the quantum theory it was not generally felt that the MICHELsON-
LorenNTz Interruption Theory could be accepted without some further justifi-
cation in the light of the transition from the classical to the quantum physics.
The first attempts at justification proceeded from the classical to the quantum
while later attempts—twenty and more years later—were just the other way
round. One does sometimes receive the impression that the approximating
ability of some of the authors is perhaps overtaxed.

The first quantum justification of the use of the classical FOURIER trans-
formation in the manner of MICHELSON was a simple appeal to correspondences
by LENz! which was perhaps as good a justification as any, if rather qualitative.
In this appeal, two broadening agencies are assumed.

In the first of these, collisions are supposed to completely transform excitation
energy into translational energy. In the quantum case a certain percentage of
the atoms in a gas radiate while the remainder lose their excitation energy by
collision. This corresponds to the classical case wherein the emitting oscillator
radiates a portion of its energy and loses the remainder on collision.

In the second type of collision a so-called optical collision occurs during the
passage of a perturber at some minimum distance. At this minimum an instan-
taneous large perturbation of the emitted radiation frequency is presumed. Then
between two such collisions defined radiation is emitted which may be analyzed
according to FOURIER.

Now WEeisskopF [I1] presented a quantum justification of the FoOURIER
transform of a much quantitative nature to which JABLONSKI has taken some
exceptions which we shall mention. WEISSKOPF set the SCHRODINGER equation
for the problem up in one dimension which JABLONSKI? felt was a rather poor
way.to treat a central force problem. This latter author was of the opinion that
this merely camouflaged the difficulty at the turning point of the classical motion
rather than easing it. JABLONSKI also objected to WEISSKOPF’s apparent failure
to properly quantize the translational motion. These criticisms appear important
primarily in emphasizing that the interruption picture of line bfoadening is
only a limiting approximation to the solution of the actual broadening problem,
a point which easily may be overlooked.

Whether approximate or otherwise, however, these justifications do provide
a basis for the later investigations of the Interruption Theory.

6. The interruption shape with zero collision time. Let us consider the
oscillating dipole moment—the oscillating photoelectron—of the emitter. We
suppose it to be given by

i
M (¢) = const - exp [1 [ wy (') dt’]
0
and the FOURIER amplitude by

J(w) = }wM (¢) e~t**dt = const Txéxp [+ ftwo (#) dt’ — wi}] dt. (6.1)

¢

We suppose w,(f) to be a constant between two “optical collisions”’ —which
are yet to be defined —and completely undefined during these collisions. As in

1 W. Lenz: Z. Physik 25, 299 (1924).
2 A. JaBLoNnsKI: Phys. Rev. 68, 78 (1945).
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Sect. 3, we simply perform a FoURIER analysis of the cut off wave train thus
emitted during tim¢ 7, the intercollision time

/2

J(¥) = const j et gt = const -S—i.%?:_v—?ﬂ (6.2a)
—z/2
so that: sin? 7 (v, — ¥) 7] ‘
I'(v) = |J(») |* = const —5—> = (6.2b)

72 (vg — )2

which, of course, corresponds precisely to Eq. (3.1). As did LoRENTZ in obtaining
Eq. (4.7), we now average Eq. (6.2b) over all T as follows:

' —z 127 7)
I(v) = fI (¥) e~ " dz’ = const o ()’/_:(:/27”), (6.3)

1]

where, of course,’

g Cv) g 1
= =N | (64
with {v) the relative velocity. If we were to assume MICHELSON’S hard spheres
as the atomic models, a collision would take place when the center of the emitter
were separated by an atomic diameter from the center of a broadener. The dia-
meter would then be the g of Eq. (6. 4). In the WEISSKOPF version of the Inter-
ruption Theory, however g is the “optical collision diameter”” which we now
define.

Let us consider Eq. (6.1), in particular f @y (t) dt'. In this expression wy ()

is the vibrational frequency of our photoelectron Further we suppose w,(?’)
to change with time as a result of an interaction between emitter and broadener.

Let us write
i t %
Jwo(t')dt =wot + [A(r)dt' = wyt + 7 (6.5)
0 : 0 ‘

wherein we have supposed that the frequency perturbation is a function of emitter-
broadener separation ». Now we assume that when # has attained some specific
value, an optical collision has taken place, and the emitted wave train is cut off
and FOURIER analyzed.

Some value of 7 has to be assumed as defining a’ collision, and WEISSKOPF
felt that #==1 was a reasonable value. This assumption, although admittedly
rather arbitrary, allows the evaluation of the optical collision diameter g. Let
us ‘consider a VAN DER WAALs interaction (A4(r) =C/7®) between emitter and
broadener, thus precluding self-broadening at least. Further, the phase change
is presumed to occur during the collision of duration ¢ so that the extension of
the limits of mtegratxon in Eq. (6.5) will not affect the value of 7. Letting
x=vlfp, '

st 400
e cdt o c B dx - c .31!‘
ﬂ”f((v)m-%—ez)- = S f(x”_ ,)a.— &S (8) (6.6a)

1 Some authors have used root mean square relative velocity while others have used mean
relative velocity.
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which is ~1 by our assumption so that

nC \t :
e=(+%s) (6:6%)
for the vAN DER WAALs interaction where C is in angular frequency units, w.

This then is the LENz-WEIssKOPF modification of the early MICHELSON-
LoreNTz Interruption Theory. For certain applications it remains quite useful.
Let us consider Fig.1 in an attempt to provide a clearer physical picture of
the implications of this theory.

To begin with we suppose the arrow to represent the emitter path while the
circles represent perturbers. Specifically the circles marked A are perturbers
which are too distant from the emitter path to cause a phase shift of one while
the perturbers B are sufficiently close to induce such a shift. At point & on the
perturber path the separation of the B broadener and the emitter is such that
an ‘optical collision has just terminated. Thus, our emitter will begin to emit
again as it proceeds along its path from
point b. It will pass among the 4 per- @ @
turbers, but, al though they will affect the .z
emitter, no collision in the WEISSKOPF
sense will take place until the point c is
reached. At this point =1 so that a ‘
collision has taken place. Radiation is @ @
terminated, and the emission between za
points b and ¢ is FOURIER ana‘lyzed' Fig. 1. A model of the physical conception inherent in
Specifically then, we have neglected two the Weisskopr Interruption Theory.
possible contributions to line shape, (1)
the effect of the distant collisions with the 4 perturbers and (2) the effect of the
near collisions resulting in phase shifts of > 1, as for example would take place
along the paths a—>b and c—d. This neglect of close collisions might also be
considered as a failure to include the ‘““time of collisions”.

These are the discrepancies which seem to appear in the physical picture and
they might perhaps be associated with certain discrepancies which show up in
our line shape. Supposedly Eq. (6.3) gives the line shape regardless of the inter-
atomic interactions responsible for the shape with Eq. (6.6b) furnishing the
optical collision diameter for the VAN DER WAALS interaction. Since experimental
evidence would lead us to expect a line shift and a line asymmetry in this case,

“the result is rather disappointing. LENZ! first attempted to resolve this disparity
by including the time of collision (which would correct our second neglect in
the physical picture) but without too much success. LinpDHOLM? later included
(1) the effect of distant collisions quite successfully and this we shall consider.
The author subsequently included (2) the effect of near collisions on the time of
collision. We remark that (2) is no longer actually an interruption consideration
and leads to a more general formulation. For this formulation we shall turn to
the work of ANDERSON.

7. The distant collision included. If, in Eq. (6.1), we substitute Eq. (6.5), the
amplitude may be written as '

+o0
]‘(,‘,) s f ez:u'(v—v.)u-i.:i(l) di

-—00

1 W. Lenz: Z. Physik 80, 423 (1933).
2 E. LinpHOLM: Ark. Mat. Astron. Fys. A 28, No. 3 (1942).
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wherein, of course, 7=A(f). This leads us to the following expression for the
intensity:

+o0
I('l-’) :l f e2ni(v——vu)t+1'd(t) dt |2
—o0

+o00
= ff e2at(v—w) (=) +ild ") —AE)] g 44 (7‘1)

—00

—-—00

+oo +00
— f e2nilr—va)t J¢ f etld+t)—a@)] gy
0

and we have let ¢=¢"—1¢.

We now introduce a concept—originally due to LENz!—which has been ex-
tensively used in evaluating the second of the two integrals in Eq. (7.1), the
integral which was later to be dubbed ““correlation function’. If we assume a
random distribution in time, then this second integral may be considered the
statistical time mean of exp {s[4(¢+¢) — 4(#')]}. We may recall the use of the
ergodic hypothesis to infer the fact that the statistical time mean is equivalent
to the statistical mean. A method of evaluation of this integral is then to deter-
mine the statistical mean of this exponential.

Next it is assumed that three different phase changes may occur on collision.
The number three is completely arbitrary and could be increased to any desired
number. The mean time between collisions is 7, and the phase changes are 7,,
s, and n),. The probability of # collisions of phase change #,, m collisions of phase
change 7, and / collisions of phase change 7, is

(n+m40! (6,\*(ap\™ [0,V
.08 v
where ¢=o0,+0,+0, is the collision cross-section. The probability of the
n-+m -1 collisions occurring during time £ is
1 ( t )n+m+l

m+m+nl\z v (7.2b)

T

so that the probability for occurrence of # a-collisions, m b-collisions, and / ¢-col-
lisions of mean intercollision time 7 during the time ¢ is

Gl el = 73)
Now by our definitions,
A+t) —AQ) =nn,+ mny+-L,.

We may now return to the evaluation of the second integral in Eq. (7.1)
which may be written as

14 +8)—AW)]
< >

R i i i(fg_)"(gq )m(&)lf—j—(.i)”+m+le—flf {e‘[ﬂﬂ¢+mn»+lm]}. (7'4)
n=0 m=0 . !

Tml !
ive o o/ n!'m! T
Further:
o0 .
2 (35 tet 771) .i'. = EXP [G_“i eiﬂa]
oT n! oT
n=0
1 1.c., footnote 1 on p. 9.
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so that Eq. (7.4) becomes

[g e"’?a + o3 et b + oce 1"h:] e—tiT
(el —aW)]y — eta < X (7.5)

Eqgs. (7.1) and (7.5) lead to

t
%) ___fe ;%‘,[a—wcosﬂ‘] cos [;%—Z o;sinn; 4 27 (v — v,) ¢| dt. (7.6)
We now let
tz % (¢ —o;co8m;] =at, (7.72)
tZ%sinnir—ﬂt (7.7b)

with the result
() = fe—=t cos {[27% (v — %)) +B] £} d¢
0
o const ) (7.7C)
T ARE

27

The line shift is obviously given by f# while the line width is just as obviously
given by 2a. The problem of evaluation is the relatively straightforward one of
phase shift evaluation in Egs. (7.7). With a classical path assumption one may
evaluate by equations of the form Eq. (6.6a) for example.

If we designate the broadening interactions as C/»" then Egs. (7.7) may be
evaluated for several cases of interest:

7 0, A,

3 47n3CN —

4 3.88CivAN  33.4Ciud N

6 17.0Ctv¢ N  646Ctuk N
and in all cases the constant, the half-width, and the shift are in angular frequency
units.

8. Detailed balancing. Let us diverge from the main stream of the develop-
ment for a rather important subsidiary consideration.

Now the method, which vAN VLECK and MARGENAU! used to obtain the power
absorbed per frequency interval in a form which agreed with the power emitted,
was to obtain the work done by the radiation field on the oscillator befween col-
lisions and to this add the impulsive work done a¢ collisions.

The power emitted by the oscillator may be obtained as

Bi(w) = (1/1:)t

where we have supposed

[Be(@)] = [2 5 208 | 2(@)2| (1) - (8.12)

X = — ? x?

and, since the FOURIER analysis of x (w) is only carried out over the period between
two collisions, in which we have averaged over a long period #. One thus obtains

_ ap (1/1)7 - (o
Fy(w) = 3mcd wt (g — )% + (1/7)2 Ea (wp + w)2 + (1/7)2 | " (8.4b)

1 J. H. vaN VieEck and H. MARGENAU: Phys. Rev. 76, 1211 (1949).
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We suppose collisions to occur at ¢=¢#, ¢,, ... and the equation to be satis-
fied is
eE.

X+ wix = ~ 2 cos (wt+ @)

where
x=2x for { St <4,

=1z, for t, <t <ty etc.

under the LoRENTZ boundary conditions %; (%) = x; () =0. A solution is

-t

7= LEs f cos (@t — ¥ + ¢) sin (w,t) 42, (8.2a)
: (1]
& t—i5 -

x;= ;: f cos (wt — wit’ + @) cos (wyt')dt’. (8.2b)

0

Thus, the work done by the field on the oscillator between collisions is

ti41 .
W == feE,cos(wt—l—cp)aZ,dt l
(8.3)

iy

. \9, ) t
st chos (wt+ @) dtfcos [w(t— ¢ + @;)] coswy ¢’ dt’ J
ie 0 .

m

where :
P=1t,,—1¢ and ¢pj=wt7~+(p_.

, ,
The distribution (—_:—) "' e~%" is again applied to the intercollision times, the

summation in Eq. (8.3) now being replaced by an averaging over this distri-
bution. The time of observation is #’. A subsequent reduction of the trigono-
‘metric relations leads to

. o L4 ¢ 4
w 1 2E2 [1)\8 ., - ,.A ’ 2 Py
7,-—=—t,7[82m (7> ¢ fe o dﬂfdtfcoswt cos w, ¢ dt]
0 0o 0 -
__ ¢2E} [ (1/7) + (1/7) ]
T oam | (0 — @)? + (1/7) (@ + wo)® + (1/7)?

(8.4)

which is the work done per unit time (power) by the field on the oscillator between
collisions. We now find the work done at collisions.

If ¢, . is the time of collision, then the boundary condition requires that
%;(¢,+1) be zero. In all probability x;(Z,,) will have some value not zero immediately.
prior to collision so that an instantaneously infinite velocity would be required
to have x; (¢, ,) zero. This has been objected to asnot physically plausible, but when
one admits it as a mathematical approximation—which is probably as reasonable
as the collision model itself—it should not be too hard to-accept. For the impulsive

work at collision then

Gao bt
W,=lim | eE,cos(wt+g)i;dt=— Y eE,cos(@t+@)x (tpy) (8.5
7

£->0 b=t



