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It is a pleasure to dedicate this volume to

Alex B. Novikoff and Arnold M. Seligman



Preface

This is the second volume in the series on the principles and methods em-
ployed for studying enzymatic activity. It is encouraging to know that
the first volume has been favorably accepted. This volume has developed,
over the years, through the joint effort of ten distinguished author-scientists.
The book contains new viewpoints with particular regard for current prob-
lems.

It is my impression that this volume will fulfill its purpose: to provide an
understanding of the uscfulness, limitations, and potential of the prepara-
tory procedures used for studying enzymatic activity. I hope that it may
prove to arouse more interest in the importance and problems of electron
cytochemistry, and to motivate a deeper and refined study of enzymatic
activity.

It is a pleasure to acknowledge the cooperation shown by Mrs. Alberta
Gordon of Van Nostrand Reinhold Company.

M. A. HAYAT
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Hemoproteins

EDWARD ESSNER

Sloan-Kettering Institute for Cancer Research
New York, New York

INTRODUCTION

The application of histochemical methods to the study of hemoproteins
was initiated at the turn of the century when Fischel (1910) introduced
benzidine as a substrate and demonstrated a thermolabile peroxidase ac-
tivity in the granules of eosinophilic and neutrophilic leukocytes. The
procedure was subsequently modified by Graham (1918), who also sug-
gested the use of e-naphthol. In later studies, additional substrates were
proposed as indicators in peroxide-peroxidase systems (Pearse, 1961).
These include orthophenylenediamine, the so-called leuko dyes, and
3-amino-9-ethyl-carbazole (Graham et al., 1965), introduced originally
by Burstone (1960) for the demonstration of cytochrome oxidase and
aminopeptidase activities. Additional references to the earlier literature
may be found in the review by Agner (1941). Despite the availability of
these and other compounds, benzidine has proved to be the substrate of
choice for the light microscopic demonstration of hemoproteins. However,
neither benzidine nor the other substrates mentioned above are useful for
electron cytochemistry.

The localization of peroxidase activity at the ultrastructural level with
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benzidine as substrate was first reported by Mitsui (1960), who demon-
strated reaction product in the granules of salamander leukocytes. How-
ever, the deposits obtained after incubation in benzidine media are gen-
erally of irregular size and shape, and have relatively low electron opacity
(Mitsui, 1960; Graham and Karnovsky, 1966a; Goldfischer and Essner,
1969). This may necessitate densitometry (Mitsui, 1960) to confirm the
reaction or inordinately long incubations to accumulate sufficient end
product. For these reasons, the benzidine procedure has not been exten-
sively used for the electron microscopic study of peroxidase or other
hemoproteins.

Several substituted benzidines such as o-tolidine, 2,4-diaminofluorene
and 2,7-diaminobenzidine have been suggested (Ornstein, 1968). These
substrates yield oxidation products that couple rapidly with e-naphthol,
forming extremely insoluble precipitates. Apparently, however, they have
not yet been tested at the ultrastructural level.

Interest in the study of hemoproteins was revived when Graham and
Karnovsky (1966a) introduced 3,3’-diaminobenzidine (DAB) (Fig. 1-1)
and demonstrated its usefulness for the ultrastructural localization of per-
oxidase activity. Oxidized DAB is readily visualized by both light and
electron microscopy. These authors also noted that o-dianisidine can be
substituted for DAB, but that the end product lacks sufficient electron
density.

The DAB procedure or one of its subsequent modifications has since
been applied extensively to the localization of hemoproteins in various
cells and tissues. Reaction product has been localized in structures such as
endoplasmic reticulum, nuclear envelope (Fig. 1-2), Golgi saccules, and
various types of granules. It has also been visualized in smaller cytoplasmic
components such as pinocytosis vesicles (Fig. 1-6) and ribosomes (see
discussion below). These observations are indicative of the high resolu-
tion that can be achieved with the DAB procedures. This is due in large
measure to the unique properties of oxidized DAB, which may be sum-
marized as follows: finely granular or amorphous form; insolubility in
dehydration and embedding agents; high opacity due to formation of in-
soluble, polymeric complexes with osmium (Fig. 1-1) (Hanker er al.,
1967, Seligman et al., 1968); and minimal diffusion under the usual con-
ditions of incubation (however, see below, “Diffusion Artifacts™).

Almost all hemoproteins containing an iron porphyrin prosthetic group
display peroxidase or peroxidatic activity, and are therefore potentially
demonstrable with the DAB procedures. These include the protoheme
peroxidases, catalase, the nonenzyme hemoproteins such as hemoglobin,
myoglobin, and cytochrome ¢, and certain heme-containing proteins found
in lysosomes and related organelles. Not included in this list are the flavo-
protein peroxidases, which contain flavin adenine dinucleotide as prosthetic

-
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Fig. 1-1. Hypothetical formulation of the oxidative
polymerization of DAB to an indamine polymer (A).
This may be followed by further quinoid addition to
the primary amine resulting in oxidative cyclization to
a phenazine polymer (B). A. M. Seligman et al.,
J. Cell Biol. 38, 1 (1968).

group and lack hematin or metals in significant amounts. For example,
glutathione peroxidase found in liver, blood, and other tissues is insensitive
to cyanide and azide (Paul, 1963); it does not oxidize p-tolidine or guaia-
col, and would therefore probably not oxidize DAB. However, such en-
zymes might be demonstrated by applying the methods recently developed
by Hanker er al. (1972a and b). These authors have shown that certain
transition metal compounds (e.g., cupric ferrocyanide) are capable of
catalyzing the nonenzymatic oxidative polymerization of DAB to an inda-
mine-type osmiophilic polymer, and that this principle can be exploited
cytochemically for the demonstration of hydrolases and dehydrogenases.

Seligman and colleagues have studied two compounds chemically re-
lated to DAB which are oxidized in certain tissues. These are N,N’-bis
(4-amino-phenyl)-1,3-xylylenediamine (BAXD) and N,N’-bis (4-amino-
phenyl)-N,N" dimethyl ethylenediamine (BED) (Seligman et al., 1970;
Nir and Seligman, 1971). Both compounds are oxidized by horseradish



