

Zahra Beheshti Siti Mariyam Shamsuddin

Centripetal Accelerated Particle Swarm Optimization And Applications

CAPSO and its Applications in Machine Learning

Zahra Beheshti Siti Mariyam Shamsuddin

Centripetal Accelerated Particle Swarm Optimization And Applications

CAPSO and its Applications in Machine Learning

Impressum / Imprint

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Alle in diesem Buch genannten Marken und Produktnamen unterliegen warenzeichen, marken- oder patentrechtlichem Schutz bzw. sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Inhaber. Die Wiedergabe von Marken, Produktnamen, Gebrauchsnamen, Handelsnamen, Warenbezeichnungen u.s.w. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutzgesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Bibliographic information published by the Deutsche Nationalbibliothek: The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Any brand names and product names mentioned in this book are subject to trademark, brand or patent protection and are trademarks or registered trademarks of their respective holders. The use of brand names, product names, common names, trade names, product descriptions etc. even without a particular marking in this works is in no way to be construed to mean that such names may be regarded as unrestricted in respect of trademark and brand protection legislation and could thus be used by anyone.

Coverbild / Cover image: www.ingimage.com

Verlag / Publisher: Scholar's Press ist ein Imprint der / is a trademark of OmniScriptum GmbH & Co. KG Heinrich-Böcking-Str. 6-8, 66121 Saarbrücken, Deutschland / Germany Email: info@scholars-press.com

Herstellung: siehe letzte Seite /

Printed at: see last page ISBN: 978-3-639-70707-6

Zugl. / Approved by: Malaysia, Johor, Universiti Teknologi Malaysia (UTM), January 2013

Copyright © 2014 OmniScriptum GmbH & Co. KG Alle Rechte vorbehalten. / All rights reserved. Saarbrücken 2014

Zahra Beheshti Siti Mariyam Shamsuddin

Centripetal Accelerated Particle Swarm Optimization And Applications

CENTRIPETAL ACCELERATED PARTICLE SWARM OPTIMIZATION AND APPLICATIONS

ZAHRA BEHESHTI SITI MARIYAM SHAMSUDDIN

Computer Science

Faculty of Computing Universiti Teknologi Malaysia

JANUARY 2013

This Thesis is dedicated to n	ny beloved family for the encouragement.	their endless support and

ABSTRACT

Nowadays, meta-heuristic optimization algorithms have been extensively applied to a variety of Machine Learning (ML) applications such as classification, recognition, prediction, data mining and web mining, combinatorial optimization and so on. The majority of them imitate the behavior of natural phenomena to find the best solution. The algorithms find promising regions in an affordable time due to exploration and exploitation ability. Although the mentioned algorithms have satisfactory results in various fields, none of them is able to present a higher performance for all applications. Therefore, searching for a new meta-heuristic algorithm is an open problem. In this study, an improved Particle Swarm Optimization (PSO) scheme based on Newton's motion laws called Centripetal Accelerated Particle Swarm Optimization (CAPSO) has been proposed to accelerate learning process and to increase accuracy in solving ML problems. A binary mode of the proposed algorithm called Binary Centripetal Accelerated Particle Swarm Optimization (BCAPSO) has been developed for discrete (binary) search space. These algorithms have been employed for problems such as nonlinear benchmark functions, Multi-Layer Perceptron (MLP) learning and the 0-1 Multidimensional Knapsack Problem (MKP). The results have been compared with several well-known meta-heuristic population-based algorithms in both continuous (real) and binary search spaces. From the experiments, it could be concluded that the proposed methods show significant results in function optimization for real and binary search spaces, MLP learning for classification problems and solving MKP for binary search space.

LIST OF ABBREVIATIONS

ABC - Artificial Bee Colony

ACC - Accuracy

ACO - Ant Colony Optimization

AE - Average Error

AI - Artificial Intelligence

AIS - Artificial Immune System

ANNs - Artificial Neural Networks

APSO - Adaptive Particle Swarm Optimization

AUC - Area Under Curve

BA - Bootstrap Algorithm

BCAPSO - Binary Centripetal Accelerated Particle Swarm

Optimization

BGSA - Binary Gravitational Search Algorithm

BO - Bees Optimization

BP - Back-Propagation algorithm

BPSO - Binary Particle Swarm Optimization

CAPSO - Centripetal Accelerated Particle Swarm Optimization

CAPSO-MLP - Particle Swarm Optimization Multi-Layer Perceptron

CD - Check-and-Dropt

CEM - Cross Entropy Method

CLPSO - Comprehensive Learning Particle Swarm Optimization

COPs - Combinatorial Optimization Problems

CP - Charged Particle

CS - Cuckoo Search

CSS - Charged System Search

DSA - Differential Search Algorithm

DE - Differential Evolution

DMS-PSO - Dynamic Multi-Swarm Particle Swarm Optimization

FA - Firefly Algorithm

FFNN - Feed-Forward Neural Network

FN - False Negative

FP - False Positive

GA - Genetic Algorithm

GbSA - Galaxy-based Search Algorithm

GLS - Guided Local Search

GPSO - Global-topology Particle Swarm Optimization

GSA - Gravitational Search Algorithm

GSA-MLP - Gravitational Search Algorithm Multi-Layer Perceptron

GSO - Glowworm Swarm Optimization

HMM - Hidden Markov Model

HMO - Honey-bee Mating Optimization

HPSO-TVAC - Hierarchical Particle Swarm Optimizer with Time-

Varying Acceleration Coefficients

HS - Harmony Search

ICA - Imperialist Competition Algorithm

ICA-MLP - Imperialist Competition Algorithm Multi-Layer

Perceptron

ICRO - Improved Check-and-Repair Operator

ILS - Iterated Local Search

IWD - Intelligent Water Drops

KH - Krill Herd

LBCAPSO		Local-topology Binary Centripetal Accelerated Particle Swarm Optimization
LCAPSO	×	Local-topology Centripetal Accelerated Particle Swarm Optimization
LPSO	1-0	Local topology Particle Swarm Optimization
MAE	-	Mean Absolute Error
MKP	-:	Multidimensional Knapsack Problem
ML	-1	Machine Learning
MLP	-	Multi-Layer Perceptron
MOGA	-	Multi-Objective Genetic Algorithm
MS	-	Monkey Search
MSE	151	Mean Square Error
PF	=:	Penalty Function
PSO	5)	Particle Swarm Optimization
PSO-MLP	-	Particle Swarm Optimization Multi-Layer Perceptron
DDE		Radial Basis Function
RBF	= 1	
RFD	=0	River Formation Dynamics
ROC		Receiver Operating Characteristics
RSO		Reactive Search Optimization
SA	-	Simulated Annealing
SD	8	Standard Deviation
SO		Spiral Optimization
SS	~	Scatter Search
TLBO	-	Teaching-Learning-Based Optimization
TN	5	True Negative
TP	-	True Positive
ma		
TS	-	Tabu Search

VNS - Variable Neighborhood Search

VPSO - Von - Neumann topology Particle Swarm Optimization

WNN - Wavelet Neural Network

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Details of Functions of Table 4.3	167

TABLE OF CONTENTS

CHAPTER		TITLE		PAGE				
	ABS	ABSTRACT						
	TAB	LE OF (CONTENTS	iv				
	LIST	LIST OF TABLES						
	LIST	OF FIG	GURES	xiii				
	LIST	OF AB	BREVIATIONS	xvi				
	LIST	OF AP	PENDICES	XX				
1	INT	INTRODUCTION						
	1.1	1						
	1.2	Proble	em Background	3				
	1.3	Resear	rch Statement with Research Questions	6				
	1.4	Goal o	of the Research	7				
	1.5	Object	7					
	1.6	Scope	8					
	1.7	9						
	1.8	Organ	9					
2	МЕТ	12						
	2.1	Introd	12					
	2.2	Conce	Concept of meta-heuristic					
	2.3	Classi	13					
		2.3.1	Nature-inspired against non-nature inspired	14				
		2.3.2	Population-based against single point search	14				

		2.3.3	Dynamic function	against static objective	15
		2.3.4		neighborhood structures ngle neighborhood	16
		2.3.5	Memory methods	usage against memory-less	16
	2.4	Related	works		16
	2.5	Populat	tion-based	meta-heuristic algorithms	21
		2.5.1		n-based meta-heuristic is in real search space	21
			2.5.1.1	Genetic Algorithm (GA)	21
			2.5.1.2	Particle Swarm Optimization (PSO) in real search space	25
			2.5.1.3	Imperialist Competition Algorithm (ICA)	32
			2.5.1.4	Gravitational Search Algorithm (GSA) in real search space	36
		2.5.2		n-based meta-heuristic s in binary search space	39
			2.5.2.1	PSO in binary search space (BPSO)	40
			2.5.2.2	GSA in binary search space (BGSA)	40
	2.6	Discuss	sion		41
	2.7	Summa	ry		42
3	MAC	HINE	LEARNIN	G AND ITS	
3		ICATIO		G AND 115	44
	3.1	Introdu	ction		44
	3.2	Machin	e Learning	(ML)	44
	3.3	Meta-he (ML)	euristic algo	orithms in Machine Learning	46
		3.3.1	Function	optimization	46
		3.3.2	Artificial	Neural Networks (ANNs)	47

			3.3.2.1	Multi-Layer Perceptron (MLP) network	49
			3.3.2.2	Back-Propagation (BP) algorithm for MLP training	51
			3.3.2.3	Meta-heuristic algorithms for MLP training	52
		3.3.3	Combina	atorial Optimization Problems	57
			3.3.3.1	The 0-1 Multidimensional Knapsack Problem (MKP)	57
			3.3.3.2	Hybrid of meta-heuristic algorithms and the 0-1 MKP	59
	3.4	Summa	ary	, and	60
ļ	RESE	ARCH METHODOLOGY			
	4.1	Introduction			
	4.2	Genera	l Research	Framework	62
		4.2.1	Phase 1:	Research development	65
			4.2.1.1	Data preparation for function optimization	65
			4.2.1.2	Data preparation for MLP learning	69
			4.2.1.3	Data preparation for the 0-1 MKP	72
			4.2.1.4	Identifying the hybrid learning meta-heuristic algorithms for MLP network	73
			4.2.1.5	Identifying the hybrid meta-heuristic algorithms for solving the 0-1 MKP	74
		4.2.2	Phase 2: algorithm	Design and development of as	75
		4.2.3	Phase 3:	Validation process	75

			4.2.3.1	Function optimization	76
			4.2.3.2	Performance measure in classification problems using MLP network	76
			4.2.3.3	Performance evaluation of MKP	78
	4.3	Summa	nry		78
5	SWAI AND	BINAR	IMIZATI	ELERATED PARTICLE ON (CAPSO) FOR REAL CH SPACES USED IN TION	79
	5.1	Introduc	ction		79
	5.2	The Newton's motion laws used to design the proposed algorithms			
	5.3	CAPSO - The proposed algorithm for real search space			81
	5.4	BCAPSO - The proposed algorithm for binary search space			83
	5.5	Analysis and design of the proposed algorithms			84
	5.6	Experimental results of the proposed methods for function optimizations			87
		5.6.1		and discussion of function in real search space	88
			5.6.1.1	Comparison with different dimension	94
			5.6.1.2	Comparison with other PSO algorithms	98
		5.6.2	-	and discussion of function in binary search space	101
		5.6.3	Overall c	omparison of algorithms nce	109
	5.7	Summar	у		111