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Preface

Engineering materials continue to encounter challenges for new property combi-
nations, and these challenges are leading to many hybrid materials known as
composites. Particulate composites are formed using powders to create property
combinations not available in traditional engineering compositions. This book
provides engineers with information relevant to meeting the challenges on synthe-
sis, selection, fabrication, and design associated with applying composites to
demanding applications. Growth in the field is accelerating as we learn more
about how to deliver novel property combinations. Further, the shaping flexibility
associated with particles provides compelling economic benefit.

Growth in the particulate composites is evident in patents, journal publications,
and press releases. For example, a new composite of gold and titanium nitride is
employed in the newest smart watches. The 18-karat watch has exceptional wear
resistance beyond that of traditional jewelry. The 75 wt% Au (46 vol.%) gives
elegance, while the hard, gold-colored TiN provides 400 HV hardness, tenfold
higher than pure gold. This is just one of many ideas. Millions of formulations are
possible, with tremendous flexibility in composition, microstructure, properties,
and performance. Although the field is challenging to master, at the same time the
performance gains are most attractive. Only now are we appreciating the full
spectrum of opportunities.

Although particulate composites are everywhere, the field is poorly organized.
Predictive calculations are ignored or missing. Consequently, product development
efforts rely on the empirical approach to see what works. In this book, the underlying
principles are emphasized with attention to the critical factors. Important aspects are
detailed with regard to the relations between phases, composition, powder charac-
teristics, microstructure, fabrication, and properties. The resulting composites are
isotropic, unlike long fiber graphite and fiberglass composites. Accordingly, a wide
array of products are treated as part of this book. The intent is to introduce particulate
composites in a manner relevant to training the next generation of innovators.

San Diego, CA, USA Randall M. German
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Chapter 1
Introduction

Particulate composites deliver property and cost combinations not available from tradi-
tional single-phase materials. These composites involve many combinations where at least
one phase starts as a powder. Basic concepts are introduced in this chapter and first details
are given on nomenclature, property models, and some compositions in use. The benefits
from starting with coated particles are introduced.

Context

Composites use two or more phases to attain property combinations not possible
from either phase alone. Chocolate is an everyday example of a composite
consisting of sugar, milk solids, cocoa, and cocoa butter, Different ratios of the
ingredients lead to semi-sweet, milk chocolate, or dark chocolate.

Particulate composites are around us everywhere. Concrete with steel reinforce-
ment bars is a widely used construction material. Rebar strengthened concrete
consists of rock and sand mixed with hydrated calcium silicate. If we performed
random spot chemical analysis, at some points the composition is low carbon steel
(Fe-0.4C), other places it is silica (SiO;), and other places it is hydrated calcium
silicate (a mixture of calcia (Ca0), silica (Si0;), and water). Engineers ignore this
“granularity” and treat concrete as a homogeneous material.

Some composites involve fibers, while others rely on particles, including elon-
gated particles (whiskers) and flat particles (flakes) [1-10]. Especially important are
particulate composites with metal or ceramic phases enmeshed in a metal, ceramic,
or polymer. The added phase is selected to improve performance of the continuous
matrix phase.

The number of possible phase combinations is enormous. This book treats the
subject using a wide range of compositions. Some attention is given to polymer
matrix composites; however, interfacial bonding to the matrix requires an active
interface that is often absent from polymer composites. Thus, more attention is

© Springer International Publishing Switzerland 2016 1
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2 1 Introduction

Fig. 1.1 Samples of
various kitchen counter tops
with different colors and
swirl patterns. The
composites are a mixture of
alumina trihydrate and
acrylic polymer

directed toward systems where either a chemical or thermal treatment induces a
strong bond between phases. The resulting applications are diverse, and include
electrical switches, metal cutting tools, electric bicycles, golf clubs, computer
servers, automobile engines, practice bullets, concrete cutting tools, and kitchen
counter tops. Often these very common applications are forgotten, yet they are
frequently used every day. For example, Fig. 1.1 is a photograph of different styles
and colors of manmade composites used in kitchens. Durability is quite important
to the commercial success of this composite.

Composites

A composite is a mixture of two or more phases. Each phase remains distinct in the
structure as evident using microscopy. Properly formulated composites deliver
attractive property combinations. As an example, iron particles coated with a
polymer are consolidated to form magnets used in electric bicycles. Iron provides
magnetic behavior while the polymer matrix makes the composite nonconductive.
This composite avoids eddy current energy losses in high frequency electric motors.
Eddy currents arise when a moving magnetic field induces electrical current flow in
the structure. Thus, the composite has desirable magnetic response without the
inefficiency from eddy currents. Likewise, composites used for cutting concrete,
marble, or granite rely on hard diamond particles dispersed in a tough metallic
phase such as cobalt. The combination delivers exceptional cutting performance for



Composites

Table 1.1 Examples of particulate composites

System Application Ingredients

Paint Spreadable surface coating Mixture of solvent, opaque parti-
cles, and polymer such as an acrylic
emulsion

Ink Printing on paper Small graphite particles in a mixture

of solvent and polymer

Porcelain Dishes, dental crowns, electrical Mixture of oxide ceramic crystals
insulators and glass phases

Electrical Make-break circuit switches Arc resistant refractory phase (W,

contacts WC, Mo) and high electrical con-

ductivity phase (Ag, Cu)

Heat sinks Redistribution of heat in computers, | High conductivity phase (Cu, Ag)
rocket engines, high intensity with low thermal expansion phase
lighting (W, Mo, WC)

Brake pads Transformation of kinetic energy Mixtures of graphite, polymers,
into heat to stop mechanical systems | metals, and ceramics

Electromagnetic | Absorption of radio wave interfer- Polypropylene or other polymers

shields ence in devices such as computers with electrically conductive dis-

persed conductors of nickel and
graphite

Permanent Flexible magnets for use in head- Polymer mixed with high capacity

magnets phones, stereo speakers, electric magnetic compound

motors

Correction fluid

Opaque cover up for typographical
errors or drawing mistakes on paper

White titania (TiO;) particles dis-
persed in a solvent-softened
polymer

Cemented
carbide

Provide hard surfaces for drawing,
machining, drilling, shearing, extru-
sion of metals

Interlocked network of hard carbide
(WC) particles in a tough metal
matrix (Co)

Wear resistant
aluminum

Air conditioner rotors, endurance
horseshoes, sporting equipment

Mixture of hard silicon carbide
(SiC) particles in aluminum alloy
matrix

Inertial weights

Selective mass to balance gyro-
scopes, aircraft wings, helicopter
rotors, vibrators, fishing, and golf
club weights

Composite consisting of mostly
tungsten (W) mixed with transition
metals, such as Cu, Fe, Ni, Mn, Co

Low toughness
projectiles

Lead-free frangible ammunition

.| where the bullet has sufficient

strength for firing but disintegrates
on target impact

Variants include tungsten
(W) bonded with nylon or copper
(Cu) bonded with tin (Sn)

Foamed ceramic

Insulation for high temperature
heating pipes with low thermal con-
ductivity up to 1000 °C

High porosity foamed hydrous cal-
cium silicate with a density near
0.2 g/em®

hard structures. Neither the diamond or cobalt alone would survive the harsh
conditions, but the composite proves exceptionally durable. Particulate composites
arise in many fields as illustrated in Table 1.1 for various compositions and
applications.



4 1 Introduction

Fig. 1.2 A cross-section
microscope image of a two
phase composite formed
from iron (Fe) and a

complex oxide compound igd

known as cordierite P
cordierite

(2Mg0-2A1,05°58i0,),

where both phases form

interlaced networks porosity

[courtesy L. Shaw]

Within a composite, each phase is distinct with regard to composition and
atomic structure. The microscopic difference between phases is readily evident.
Figure 1.2 is an image of an iron-cordierite composite. In this case there is some
residual porosity. This cross-section image contrasts the phases based on a differ-
ence in reflectivity. The phases form interlaced networks. In terms of properties, the
iron is soft, conductive, magnetic, and ductile while the cordierite consists is an
oxide compound (2MgO-2Al,05-58i0,) that is hard, nonconductive, nonmagnetic,
brittle, and stiff, with a lower thermal expansion coefficient. The two phases are
insoluble in one another, so the composite is magnetic, but low in thermal expan-
sion. This combination of properties is desirable for use in the automated assembly
of electronic diodes.

Some composites form naturally, such as bones, seashells, bamboo, and wood.
These biological composites have a broad array of properties, ranging from soft
skin to hard dental enamel [11, 12]. Biological composites provide evidence of the
importance to the phase arrangement, what is known as the morphology. For
example, abalone shell consists of calcium carbonate and rubbery biopolymer.
Neither phase is noteworthy, but the composite provides significant toughness.
Intentional control of phase morphology is part of composite design.

Microstructure refers to the image in a light or electron microscope. Each phase
has easily identifiable attributes. Microstructure can dominate properties. For dilute
compositions, one phase is dispersed in the other phase. At higher concentrations,
both phases are connected, resulting in an interlaced three-dimensional structure.
The level of phase connectivity is critical to properties. A composite microstructure
is captured in Fig. 1.3 using a polished cross-section. The cross-section shows low
thermal expansion Invar (Fe-36Ni) as the darker phase and high thermal conduc-
tivity silver (Ag) as the lighter phase. This composite is known as Silvar. The two
phases are distinct, forming three-dimensional, intertwined networks. At 40 wt%
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Fig. 1.3 Microstructure of a two phase particulate composite consisting of low thermal expansion
Invar (Fe-36Ni) as the dark phase and high thermal conductivity silver (Ag) as the light phase.
Both phases are interconnected in three dimensions [courtesy B. Lograsso]

Table 1.2 Thermal properties of silver, Invar, and Silvar composite (Silvar = Invar-40Ag)

Property Silver (Ag) Invar Fe-36Ni) Silvar (Invar-40Ag)
Density, g/cm’ 10.5 8.2 8.9

Tensile strength, MPa 180 500 200

Thermal conductivity, W/(m °C) 420 14 160

Thermal expansion, 107° I/K 20 1 8

silver (34 vol% silver) a desirable combination of properties arises, as summarized
in Table 1.2. These properties are useful in heat dissipation devices that cool
microelectronic chips. The high thermal conductivity reduces heating while the
low thermal expansion coefficient minimizes thermal fatigue. The on-off cyclesina
computer expand and contract the semiconductors, leading to fatigue failure after
repeated cycles. To avoid thermal fatigue failure, the heat spreader must match the
semiconductor expansion and contraction strains.

Interest in particulate composites derives from novel property and cost combi-
nations. In genetal there are four options:

1. properties are dominated by one phase,

2. properties are intermediate between the two phases,

3. properties are synergistically advanced over that attainable with either phase,
4. properties are degraded below that of either phase.

Most often composites are formulated to deliver improved properties. Using
hardness, Table 1.3 compiles examples for each of the four situations listed above.
In the first case of WC-8Co, the composite is nearly the same as harder phase;
tungsten carbide dominates the composite hardness. In the second case of



