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Preface

Over the past three decades, power management technology has become more important as
portable and wearable electronics have become part of our daily lives. It is important to realize
the detailed design of power management circuits, including low dropout (LDO) regulators,
switching power converters (SWRs), switched-capacitor designs among others, if battery usage
lifetime and power-conversion efficiency need to be extended. Although some circuits can be
found in analog or power electronics books, the reader cannot get an overall understanding of
power management designs. Thus, I have written this book to collect useful material related to
power management designs in recent years.

Power management IC designs use low-voltage (LV) and high-voltage (HV) devices. The
specialty of this book is including LV and HV power management designs. Moreover, the
objective of the book is to let the reader understand the process trend and demand of today’s
applications from the first. The mathematical analysis in the book is simplified, because in my
opinion the reader needs to have the ability to understand the function of power management
circuits. After that, the reader can analyze the whole power system and derive the complicated
mathematical results. Thus, [ have used many easy-to-understand figures in the book to let the
reader realize why and how power management should be implemented. Although the reader
can understand this via derived equations in some similar books, they can have the fun of think-
ing about and implementing their own designs if they study the circuits in this book by inspec-
tion rather than by equations. Moreover, digital and analog design techniques are introduced
because a combination of digital and analog skills can give maximum performance of power
management in system-on-chip (SoC) applications.

[ have taught most of the material in this book both at the National Chiao Tung University,
Hsinchu, Taiwan and in Taiwan industry. The order, the format, and the content are all carefully
polished when I deliver the material to readers. It is a pity that much material is not included in
this book. However, I encourage the reader to apply the concepts to similar power management
designs. I have included some design guidelines in this book to let the reader realize the object-
ive of each design.

Chapter 1 provides the reader with knowledge of LV and HV device characteristics and
structure in different advanced technologies for learning the material in this book.



xiv Preface

Chapter 2 describes the general design of an LDO regulator used in many power manage-
ment circuits. Compensation skills are introduced to let the reader realize how to ensure power
stability in case of any disturbance from input, output, and loading. A digital LDO regulator is
also included for LV applications.

Chapter 3 includes the design guidelines of voltage-mode and current-mode switching power
regulators. Compensation skills are also introduced to quantify the behavior of basic pulse-
width-modulation (PWM) SWRs by inspection.

Chapter 4 introduces the ripple-based control technique for some applications that demand
the features of fast transient response, low power consumption, and compact size solution. In
particular, fast transient response is the trend for SWR designs to improve the performance of
dynamic voltage/frequency scaling techniques and/or reference tracking techniques.

Chapter 5 shows some ripple-based control techniques to improve the performance of basic
designs. Even if parasitic effects become large. the techniques presented here can still have
excellent performance. Readers can train themselves by using the circuits in this book, proved
for silicon, to implement useful power management circuits.

Chapter 6 shows state-of-the-art single-inductor multiple-output (SIMO) converters used in
SoC to minimize the power module size. The power stage design and controller design are
included in this chapter. We use the design concepts introduced in Chapters 2—5. The reader
can obtain advanced training in power management designs here.

Chapter 7 shows the switching-based battery charger to complete the full function of power
management in SoC designs. The basic stability proved by some behavior simulators can let the
reader know how to model and increase the whole battery charger system.

Chapter 8 includes some energy-harvesting techniques to let the reader realize the possibility

of obtaining energy from the environment. How to convert and how to improve efficiency are
shown in this chapter.
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1

Introduction

1.1 Moore’s Law

Over the past few decades, the number of transistors per square inch on integrated circuits (ICs)
has doubled every 18 months, which is the forecast of Moore’s law and is a continuing
condition. However, a physical limitation appears when the transistor size shrinks to 28 nm.
Several technology performance boosters, for example dual stress liner (DSL) technology,
strained silicon techniques, and the stress memorization technique (SMT), are required to retain
the performance of transistors. The industry has failed to keep to the trend predicted by Moore’s

law. Figure 1.1 depicts how the rate of transistor size scaling has slowed down and is likely to
break Moore’s law by the end of 2015.

1.2 Technology Process Impact: Power Management 1C from
0.5 micro-meter to 28 nano-meter

1.2.1 MOSFET Structure

The voltage stress issue of metal-oxide—semiconductor field-effect transistors (MOSFETS) in
drivers and power MOSFETS needs careful consideration. The evolution of MOSFETSs and their
applications are based on different input supply voltage (Figure 1.2). In advanced processes
(i.e.,40, 28, and 22 nm), core MOSFETS with characteristics of small silicon size and high speed
are used in low-voltage applications. Moreover, conventional low-voltage MOSFETs are
applied for low supply voltage conditions in normal processes, such as 22 nm, 0.18 pm,
0.25 pm, and 0.5 pm. Nevertheless, the drain-to-source voltage, Vg of low-voltage MOSFETS
cannot tolerate a high voltage and punches, and will break the MOSFET when the input supply
voltage increases. Therefore, double-diffused metal-oxide—semiconductors (DMOSs), vertical

Power Management Techniques for Integrated Circuit Design, First Edition. Ke-Hormg Chen.
© 2016 John Wiley & Sons Singapore Pte Ltd. Published 2016 by John Wiley & Sons Singapore Pte Lid.
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Figure 1.2 Evolution of MOSFETs and applications with different input supply voltages

double-diffused metal-oxide—semiconductors (VDMOSs), and laterally diffused metal-oxide—
semiconductors (LDMOSs) are applied to bear a high V5. However, the gate-to-source voltage,
Vs of such MOSFETSs cannot endure a high voltage, which will also damage the MOSFET.
A high-voltage metal-oxide—semiconductor (HVMOS) solves the problem here, because its
structure can tolerate a high voltage of both V¢ and V.

The structures and characteristics of low-voltage MOSFETS, core MOSFETs, DMOSs,
VDMOSs, LDMOSs, and HVMOSs are introduced in the following subsections, followed
by a comparison of these MOSFETs.
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Gate oxide

p— substrate

Figure 1.3  Structure of typical n-channel low-voltage MOSFET

1.2.1.1 Low-Voltage MOSFET

The structure of a typical n-channel low-voltage MOSFET is shown in Figure 1.3. Compared
with LDMOSs and HVMOSs, the simple structure of a low-voltage MOSFET has the advan-
tages of small silicon area and longest effective channel length (L,4), which is defined as the
contact area between the p well and the gate in the n-channel low-voltage MOSFET. Moreover,
a thin-gate oxide is designed to achieve the high-speed on-and-off switching of the MOSFET.
However, this thin-gate oxide cannot bear the high voltage stress of the V. Moreover, the V¢
only operates in low-voltage stress conditions, because the drift region of drain is too small to
tolerate a high voltage of V.

1.2.1.2 Core MOSFET

The integrated technique of system-on-chip (Soc) has improved. A core MOSFET with small
silicon size reduces the silicon area and increases the operating speed of the Soc [1, 2]. More-
over, the supply voltage evaluates to 1.8 V, 1.05 V, or lower voltages to reduce the system’s
power dissipation. Therefore, the voltage stress of a core MOSFET cannot bear a conven-
tional supply voltage, such as 3.3 or 5 V, because the oxide layer of the core MOSFET is

thinner than that of a low-voltage MOSFET. Conventional supply voltages damage the thin-
ner oxide layer.

1.2.1.3 Double-Diffused MOSFET

Figure 1.4 shows a DMOS structure [3, 4]. The effective channel length is produced by p-type
diffusion and gate oxide. Moreover, the n-type substrate is very lightly doped in this structure.
Light doping provides enough space for expansion of the depleted region between the p-type
diffusion and the n+ drain contact regions. Therefore, the breakdown voltage between drain and

source is enlarged. This structure can endure a high voltage of Vj,¢ but not a high voltage of Vg,
because of its thin gate oxide.
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1.2.1.4 Vertical Double-Diffused MOSFET

The VDMOS structure combines the concepts of vertical power structures and lateral double
diffusion (Figure 1.5) [5]. The drain voltage is vertically supported by the n— layer. Moreover,
current flows laterally from the source through the channel, which is parallel to the silicon sur-
face, and then turns at a right angle to flow vertically down through the n— drain layer to the n+
substrate and the drain contact. An effective channel is formed, if a sufficiently positive gate
voltage is applied, and the extra drift region of the n— layer can tolerate a high voltage of V.
However, the thin gate oxide cannot bear a high voltage of V.

1.2.1.5 Laterally Diffused MOSFET

LDMOS is also applied to solve the problem of high voltage V5. The structure of a typical
n-channel LDMOS is similar to that of a low-voltage MOSFET, as shown in Figure 1.6
[6. 7]. The difference is that the LDMOS extends the drain drift region by adding an n-well



