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Preface to the
Second Edition

The Second Edition of Modeling in the Neurosciences appears on the fifth anniversary of the
publication of the first edition. Inspired by the wealth of new work since that date, we were determ-
ined to bring the book up to date, to discuss the most important new developments in neuronal and
neuronal systems modeling, including use of robotics to test brain models.

The goal of the book is to probe beyond the realm of current research protocols toward the
uncharted seas of synthetic neural modeling. The book is intended to help the reader move beyond
model ingredients that have been widely accepted for their simplicity or appeal from the standpoint of
mathematical tractability (e.g., bidirectional synaptic transfer, updates to synaptic weights based on
nonlocal information, or mean-field theories of rate-coded point neurons), and learn how to construct
more structured (integrative) models with greater biological insight than heretofore attempted. The
book spans the range from gene expression, dendritic growth, and synaptic mechanics to detailed
continuous-membrane modeling of single neurons and on to cell—cell interactions and signaling
pathways, including nonsynaptic (ephaptic) interactions. In the final chapters, we deal with com-
plex networks, presenting graph- and information-theoretic methods of analyzing complexity and
describing in detail the use of robotic devices with synthetic model brains to test theories of brain
function.

The book is neither a handbook nor an introductory volume. Some knowledge of neurobiology,
including anatomy, physiology, and biochemistry is assumed, as well as familiarity with analytical
methods including methods of solving differential equations. A background knowledge of element-
ary concepts in statistics and applied probability is also required. The book is suitable as an advanced
textbook for a graduate-level course in neuronal modeling and neuroengineering. It is also suited
to neurophysiologists and neuropsychologists interested in the quantitative aspects of neuroscience
who want to be informed about recent developments in mathematical and computer modeling tech-
niques. Finally, it will be valuable to researchers in neural modeling interested in learning new
methods and techniques for testing their ideas by constructing rigorously realistic models based on
experimental data.

The first edition of Modeling in the Neurosciences has contributed impressively to the analytical
revolution that has so completely changed our perception of quantitative methods in neuroscience
modeling. Nevertheless many different views persist regarding the most satisfactory approaches to
doing theoretical neuroscience. The source of this plethora of interpretations is, perhaps, the fact that
“computational” interpretations of brain function are not satisfactory, as discussed in the introductory
chapter by G. Reeke. Thus, it seems appropriate in this book to attempt to obtain a more balanced
picture of all the elements that must be taken into account to get a better understanding of how
nervous systems in fact function in the real world where adaptive behavior is a matter of life or
death. We hope the integrative viewpoint we advocate may serve as a Rosetta stone to guide the
development of modern analytical foundations in the neurosciences.
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viii Preface to the Second Edition

To accomplish this, we have commissioned authors to provide in-depth treatments of a number
of unresolved technical and conceptual issues which we consider significant in theoretical and integ-
rative neuroscience, and its analytical foundations. We hope that this second edition will help and
inspire neuroscientists to follow threads revealed herein for many years to come.

We acknowledge the support of the many colleagues who have made this book possible. in
particular, the authors who have given so freely of their time to create the chapters now before you.
We are also indebted to Dr. John Gillman, Publisher at Harwood Academic Publishers, Reading,
UK, who authorized the commissioning of the second edition in the winter of 2001; Dr. Grant
Soannes, Publisher at Taylor & Francis. London, UK, who contracted for the book in the fall of
2003; and Barbara Norwitz, Publisher at Taylor & Francis, Boca Raton, Florida, who finalized the
arrangements in January of 2004. Last but not least, we thank Pat Roberson and her team for their
continuing efforts in the production of a truly immaculate volume.

Sadly, one of the contributors, Aron M. Gutman, passed away soon after the launch of the first
edition in the spring of 1999. Aron Gutman was born in Zhitomir, Ukraine in 1936. He received his
Ph.D. (externally) from the Department of Physics of Leningrad University in 1962. From 1959 to
1999 he worked in the Neurophysiological Laboratory of Kaunas Medical Institute (now University).
He was a prolific writer with more than 150 scientific publications, including two monographs (in
Russian) and about 50 papers in international journals. As a distinguished biophysicist, particularly
known for his work on the theory of N-dendrites, he has made a profound impact on the scientific
community. In Gutman’s own words: “small cells use dendritic bistability with slow rich logic.”

G.N. Reeke
R.R. Poznanski
K.A. Lindsay
J.R. Rosenberg
O. Sporns
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Foreword

Numerical modeling is common, but analytical theory is rare. Fast computers and software to gen-
erate formal models have become more accessible to experimentalists at their own peril. The art of
specifying and validating models has not kept pace. The complexities and nonlinearities of neuronal
systems require, on the part of the modeling practitioner, an unusual degree of neurophysiological and
neuroanatomical insight, as well as skill in a repertoire of numerical methods. However, a computer
simulation without an underlying theory is only of heuristic value; such a model cannot be properly
tested because conceptual errors cannot be distinguished from inappropriate parameter choices.

At the cellular level, numerical models that discretize the neuronal membrane suffer from an
excess of degrees of freedom; it is difficult or impossible to collect enough data to constrain all the
parameters of such models to unique values. In such constructs, the continuity of the neuronal mem-
brane is sliced into pieces to form compartments (or “spiking neuron” models in the computational
neuroscience literature). Much better treatments of chemical diffusion and the spatial variation of
ion concentrations inside and outside the cell are badly needed. The use of continuous-membrane
(partial differential equation) models to resolve some of the issues mentioned here is a strong feature
of the present volume.

There are also foundational problems at the systems biology level. The next step toward the
construction of a solid theoretical foundation for brain science will require a precise clarification of the
subtle problems afflicting current computational neuroscience (both conceptual and epistemological),
together with the development of fully integrative models across all levels of multihierarchical
neural organization. It will also require a new understanding of how perceptual categorization and
learning occur in the real world in the absence of preassigned category labels and task algorithms.
I congratulate the editors who have produced this second edition of Modeling in the Neurosciences,
which epitomizes a trend to move forward toward the development of more conceptual models based
on an integrative approach.

Professor G.A. Chauvet, M.D., Ph.D.
Chief Editor

Journal of Integrative Neuroscience
Imperial College Press, London, U.K.
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T Introduction to Modeling in the
Neurosciences

George N. Reeke

In this book, 40 distinguished authors explore possibilities for the creation of computational models
of neuronal systems that capture biologically important properties of those systems in a realistic
way that increases our understanding of how such systems actually work. The authors survey the
theoretical basis for believing that such studies might be worthwhile, the kinds of methods that may
be employed profitably in practice, and current progress.

This field stands today at a crossroads. While computational models of cognitive function have
been constructed at least since the earliest days of electronic computers, progress has been slow.
This has been due partly to the inadequate performance until recently of the available computational
equipment, and perhaps even more due to the overwhelming acceptance of the key postulate of what
has become known as cognitive science: the idea that the brain itself is a kind of computer. Whether
the field stays on this path or takes another, while continuing to draw what inspiration it can from the
computer metaphor, will largely determine the kinds of results we can expect to see in the coming
decades and how fast we get there.

The postulate of the computational brain has been enormously successful in taking us away from
the “black box™ approach of the behaviorists. It has encouraged us to look inside the brain and analyze
what goes on there in terms of the logical conditions that must be satisfied in order to get from the
known input to the known output. This has helped us to see, for example, that the sensory affordances
spoken of by the Gibsons (1966, 1979) are the beginning, not the end, of the story. Computational
science tells us that it can be productive to ask just how it might be that an affordance is transformed
into an action. Thinking in computational terms has brought about a great deal of refinement in the
kinds of questions that are being asked about the control of behavior and the kinds of evidence that
can be brought to bear on these questions.

Nonetheless, for some time, some of us have been saying that this emphasis is holding back
our understanding of the brain (Reeke and Edelman, 1988: Bickhard and Terveen, 1996; Poznanski,
2002b). Now this claim, which until recently could be argued only on rather abstract theoretical
grounds, has begun to take hold as the inadequacies of the formalistic computational approach have
become more evident. Here I will go briefly over this ground, to remind readers of the issues involved,
then discuss briefly the kinds of facts we know about the brain that need to be taken into account to
arrive at models that truly explain, rather than just emulate, cognitive processes. I will then try to
show how the chapters in this book reflect work that does take these facts into account, and indicate
where such work might lead to in its maturity.

Just why is it that the computational analogy is inadequate? Surely it is correct that on—off
signals (neural spikes) enter the brain via multiple sensory pathways and leave via motor pathways,
just as binary signals enter and leave a computer via its input/output devices. Inside, various complex
transformations are applied to the input signals in order to arrive at appropriate behavioral outputs.
As Marr (1982) famously proposed, these transformations (call them computations if you wish) may
be analyzed at the level of their informational requirements (without certain inputs, certain outputs
can never be unambiguously obtained), at the level of algorithm (by what steps the appropriate
transformations can be efficiently carried out), and at the level of implementation (what kind of
devices are needed to carry out the algorithms). These levels of analysis apply also to, indeed, were
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2 Madeling in the Neurosciences

derived from, processes carried out in computers. Thus, what Marr has proposed is to take what
has already been learned about computation, beginning with the work of Turing (1950) and von
Neumann, and apply this information to understanding the brain. The problem arises when this
analogy is pushed too far, to the point where one falls into the temptation of calling everything the
brain does a computation. One thus arrives at the curious circularity of logic espoused by Churchland
and Sejnowski (1992, p. 61), who put it this way: “Notice in particular that once we understand more
about what sort of computers nervous systems [authors’ emphasis] are, and how they do whatever
it is they do, we shall have an enlarged and deeper understanding of what it is to compute and
represent.” In this view, the study of the brain, which is already a big enough problem, takes on the
additional burden of providing a new underpinning for computer science as well. This is necessary
because conventional computer science cannot adequately explain what it is that the brain does.
Either computer science must be expanded, as Churchland and Sejnowski suggest, or else we must
study the brain on its own terms and stop calling it a computer, as we suggest in this book.

What then, are some of the problems with the computationalist view? First and foremost, the
brain is not a programmed, or even a programmable, device. There is no evidence that neuronal
circuits are genetically specified and constructed during development to carry out specific algorithmic
manipulations of signals, except perhaps in the simplest invertebrate brains, nor can we see how
they might be, given our current understanding of the epigenetic influences that preclude perfect
realization of genetically specified templates during development. (Although Chomsky [1988] and
Pinker [1994] have suggested that humans have genetically specified circuits that provide innate
language capabilities, they have not explained what these circuits might be or how DNA could
encode the details of their construction.) Similarly, there is no mechanism in view that could explain
how the brain could make use of signals derived from behavioral errors to reshape its circuitry
in a way specifically directed to correct those errors. Rather, the brain is a product of evolution,
constructed of neurons, glia, blood vessels, and many other components in just such a way as to
have the right sort of structures to be able to generate adaptive behavior in response to environmental
inputs. It has no programs written down by a programmer and entered as instructions on some sort
of tape. The mystery that we must try to solve with our modeling efforts, then, is how the brain
organizes itself, without the good offices of a programmer, to function in an adaptive manner. In
other words, on top of the mystery of what processes the brain might be carrying out, which the
computational approach investigates, there is the further mystery of how those processes construct
themselves. That mystery is generally ignored by the computational approach or else solved only
by biologically unrealistic mechanisms such as back-propagation of error signals (Werbos, 1974;
McClelland et al., 1986; Rumelhart et al., 1986) or so-called genetic algorithms (Holland, 1975),
which make a caricature of the processes of mutation and recombination that occur during evolution,
applying them incorrectly to specifications of procedures rather than of structures.

A second, closely related problem, concerns the question of how neural firings in the brain
come to have meaning, that is, how they come to represent objects and actions in the world, and
eventually, even abstract concepts such as black holes or Gédel’s proof that have no obvious referents
in the sensory world around us. In ordinary Turing machine computation, of course, the signals in
the machine are assigned interpretations as numbers by the machine’s designer, and these numbers
are in turn assigned meanings in terms of a particular problem by a programmer. A great deal
of work in artificial intelligence has gone into finding ways to free machine programs from their
dependence on preassigned symbol definitions and prearranged algorithms to operate upon those
symbols. This work has led to systems that can prove mathematical theorems (Wos and McCune,
1991), systems that can optimize their own learning algorithms (“learn how to learn”) (Laird et al.,
1986), even systems that can to a limited extent answer questions posed in natural human language
(Zukerman and Litman, 2001). These systems have demonstrated to everyone’s satisfaction that
it is possible for a formal logic system, such as a computer, to construct rich webs of symbolic
representation and to reason from them to reach conclusions that were not included in their initial
programming.



