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Preface

Advanced engineering and scientific research results and growth in the area of humanoid
robotics as well as its applications have all been elucidated in this book. Humanoids are
believed to transform the way we communicate with machines and possess the ability
to blend smoothly into an environment already designed for humans. The information
provided in this book aims at discovering the future abilities of humanoid robots by
evaluating a variety of integrated research in distinct engineering and scientific areas like
perception, human-robot interaction, locomotion, machine learning, adaptive behavior
and neuroscience. It is a practical book as it lays stress on important information for the
people engaged in the fields of robotics, computational methods, artificial and cognitive
science as well as other scientific fields directly or indirectly connected with the applications
and advancement of future humanoid robots. The information in this book is contributed
by experts holding significant research and development experience, patents as well as
publications in the field of humanoid robotics.

The researches compiled throughout the book are authentic and of high quality, combining
several disciplines and from very diverse regions from around the world. Drawing on the
contributions of many researchers from diverse countries, the book’s objective is to provide
the readers with the latest achievements in the area of research. This book will surely be a
source of knowledge to all interested and researching the field.

In the end, I would like to express my deep sense of gratitude to all the authors for meeting
the set deadlines in completing and submitting their research chapters. I would also like
to thank the publisher for the support offered to us throughout the course of the book.
Finally, I extend my sincere thanks to my family for being a constant source of inspiration
and encouragement.

Editor



Contents

Part 1

Chapter 1

Chapter 2

Chapter 3

Part 2

Chapter 4

Chapter 5

Chapter 6

Part 3

Chapter 7

Preface
Periodic Tasks and Locomotion Control

Performing Periodic Tasks: On-Line Learning, Adaptation and
Synchronization with External Signals
Andrej Gams, Tadej Petri¢, Ale$ Ude and Leon Zlajpah

Design of Oscillatory Neural Network
for Locomotion Control of Humanoid Robots
Riadh Zaier

Autonomous Motion Adaptation Against
Structure Changes Without Model Identification
Yuki Funabora, Yoshikazu Yano, Shinji Doki and Shigeru Okuma

Grasping and Multi-Fingered Robot Hand

Grasp Planning for a Humanoid Hand
Tokuo Tsuji, Kensuke Harada, Kenji Kaneko,
Fumio Kanehiro and Kenichi Maruyama

Design of 5 D.O.F Robot Hand

with an Artificial Skin for an Android Robot
Dongwoon Choi, Dong-Wook Lee,
Woonghee Shon and Ho-Gil Lee

Development of Multi-Fingered Universal
Robot Hand with Torque Limiter Mechanism
Wataru Fukui, Futoshi Kobayashi and Fumio Kojima

Interactive Applications of Humanoid Robots

Affective Human-Humanoid Interaction
Through Cognitive Architecture
Ignazio Infantino

VII

29

49

61

63

81

97

109

111



VI Contents

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Part 4

Chapter 14

Speech Communication with Humanoids:
How People React and How We Can Build the System
Yosuke Matsusaka

Exoskeleton and Humanoid Robotic Technology
in Construction and Built Environment
T. Bock, T. Linner and W. Ikeda

Implementation of a Framework for Imitation Learning
on a Humanoid Robot Using a Cognitive Architecture
Huan Tan

User, Gesture and Robot Behaviour Adaptation for
Human-Robot Interaction
Md. Hasanuzzaman and Haruki Ueno

Learning Novel Objects for Domestic Service Robots
Muhammad Attamimi, Tomoaki Nakamura, Takayuki Nagai,
Komei Sugiura and Naoto Iwahashi

A Multi-Modal Panoramic Attentional Model for
Robots and Applications
Ravi Sarvadevabhatla and Victor Ng-Thow-Hing

Current and Future Challenges for Humanoid Robots

Rob’s Robot: Current and Future Challenges for
Humanoid Robots
Boris Duran and Serge Thill

Permissions

List of Contributors

129

153

189

211

239

259

277

279



Part 1

Periodic Tasks and Locomotion Control






Performing Periodic Tasks: On-Line
Learning, Adaptation and Synchronization
with External Signals

Andrej Gams, Tadej Petri¢, Ales Ude and Leon Zlajpah
JoZef Stefan Institute, Ljubljana
Slovenia

1. Introduction

One of the central issues in robotics and animal motor control is the problem of trajectory
generation and modulation. Since in many cases trajectories have to be modified on-line
when goals are changed, obstacles are encountered, or when external perturbations occur,
the notions of trajectory generation and trajectory modulation are tightly coupled.

This chapter addresses some of the issues related to trajectory generation and modulation,
including the supervised learning of periodic trajectories, and with an emphasis on the
learning of the frequency and achieving and maintaining synchronization to external signals.
Other addressed issues include robust movement execution despite external perturbations,
modulation of the trajectory to reuse it under modified conditions and adaptation of the
learned trajectory based on measured force information. Different experimental scenarios on
various robotic platforms are described.

For the learning of a periodic trajectory without specifying the period and without using
traditional off-line signal processing methods, our approach suggests splitting the task into
two sub-tasks: (1) frequency extraction, and (2) the supervised learning of the waveform.
This is done using two ingredients: nonlinear oscillators, also combined with an adaptive
Fourier waveform for the frequency adaptation, and nonparametric regression ! techniques
for shaping the attractor landscapes according to the demonstrated trajectories. The systems
are designed such that after having learned the trajectory, simple changes of parameters
allow modulations in terms of, for instance, frequency, amplitude and oscillation offset, while
keeping the general features of the original trajectory, or maintaining synchronization with an
external signal.

The system we propose in this paper is based on the motion imitation approach described
in (Ijspeert et al., 2002; Schaal et al., 2007). That approach uses two dynamical systems like
the system presented here, but with a simple nonlinear oscillator to generate the phase and
the amplitude of the periodic movements. A major drawback of that approach is that it
requires the frequency of the demonstration signal to be explicitly specified. This means
that the frequency has to be either known or extracted from the recorded signal by signal

! The term “nonparametric” is to indicate that the data to be modeled stem from very large families of
distributions which cannot be indexed by a finite dimensional parameter vector in a natural way. It
does not mean that there are no parameters.
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processing methods, e.g. Fourier analysis. The main difference of our new approach is
that we use an adaptive frequency oscillator (Buchli & Ijspeert, 2004; Righetti & Ijspeert,
2006), which has the process of frequency extraction and adaptation totally embedded into
its dynamics. The frequency does not need to be known or extracted, nor do we need to
perform any transformations (Righetti et al., 2006). This simplifies the process of teaching
a new task/trajectory to the robot. Additionally, the system can work incrementally in
on-line settings. We use two different approaches. One uses several frequency oscillators
to approximate the input signal, and thus demands a logical algorithm to extract the basic
frequency of the input signal. The other uses only one oscillator and higher harmonics of the
extracted frequency. It also includes an adaptive fourier series.

Our approach is loosely inspired from dynamical systems observed in vertebrate central
nervous systems, in particular central pattern generators (Ijspeert, 2008a). Additionally, our
work fits in the view that biological movements are constructed out of the combination of
“motor primitives” (Mataric, 1998; Schaal, 1999), and the system we develop could be used as
blocks or motor primitives for generating more complex trajectories.

1.1 Overview of the research field

One of the most notable advantages of the proposed system is the ability to synchronize with
an external signal, which can effectively be used in control of rhythmic periodic task where the
dynamic behavior and response of the actuated device are critical. Such robotic tasks include
swinging of different pendulums (Furuta, 2003; Spong, 1995), playing with different toys, i.e.
the yo-yo (Hashimoto & Noritsugu, 1996; Jin et al., 2009; Jin & Zacksenhouse, 2003; Zla}pah,
2006) or a gyroscopic device called the Powerball (Cafuta & Curk, 2008; Gams et al., 2007;
Heyda, 2002; Petri¢ et al., 2010), juggling (Buehler et al., 1994; Ronsse et al., 2007; Schaal &
Atkeson, 1993; Williamson, 1999) and locomotion (Ijspeert, 2008b; Ilg et al., 1999; Morimoto
et al, 2008). Rhythmic tasks are also handshaking (Jindai & Watanabe, 2007; Kasuga &
Hashimoto, 2005; Sato et al., 2007) and even handwriting (Gangadhar et al., 2007; Hollerbach,
1981). Performing these tasks with robots requires appropriate trajectory generation and
foremost precise frequency tuning by determining the basic frequency. We denote the lowest
frequency relevant for performing a given task, with the term "basic frequency".

Different approaches that adjust the rhythm and behavior of the robot, in order to achieve
synchronization, have been proposed in the past. For example, a feedback loop that locks
onto the phase of the incoming signal. Closed-loop model-based control (An et al., 1988), as a
very common control of robotic systems, was applied for juggling (Buehler et al., 1994; Schaal
& Atkeson, 1993), playing the yo-yo (Jin & Zackenhouse, 2002; Zlajpah, 2006) and also for the
control of quadruped (Fukuoka et al., 2003) and in biped locomotion (Sentis et al., 2010; Spong
& Bullo, 2005). Here the basic strategy is to plan a reference trajectory for the robot, which
is based on the dynamic behavior of the actuated device. Standard methods for reference
trajectory tracking often assume that a correct and exhaustive dynamic model of the object is
available (Jin & Zackenhouse, 2002), and their performance may degrade substantially if the
accuracy of the model is poor.

An alternative approach to controlling rhythmic tasks is with the use of nonlinear
oscillators. Oscillators and systems of coupled oscillators are known as powerful modeling
tools (Pikovsky et al, 2002) and are widely used in physics and biology to model
phenomena as diverse as neuronal signalling, circadian rhythms (Strogatz, 1986), inter-limb
coordination (Haken et al., 1985), heart beating (Mirollo et al., 1990), etc. Their properties,
which include robust limit cycle behavior, online frequency adaptation (Williamson, 1998)
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and self-sustained limit cycle generation on the absence of cyclic input (Bailey, 2004), to name
just a few, make them suitable for controlling rhythmic tasks.

Different kinds of oscillators exist and have been used for control of robotic tasks. The van der
Pol non-linear oscillator (van der Pol, 1934) has successfully been used for skill entrainment on
a swinging robot (Veskos & Demiris, 2005) or gait generation using coupled oscillator circuits,
e.g. (Jalics et al., 1997; Liu et al., 2009; Tsuda et al., 2007). Gait generation has also been studied
using the Rayleigh oscillator (Filho et al., 2005). Among the extensively used oscillators is
also the Matsuoka neural oscillator (Matsuoka, 1985), which models two mutually inhibiting
neurons. Publications by Williamson (Williamson, 1999; 1998) show the use of the Matsuoka
oscillator for different rhythmic tasks, such as resonance tuning, crank turning and playing
the slinky toy. Other robotic tasks using the Matsuoka oscillator include control of giant
swing problem (Matsuoka et al., 2005), dish spinning (Matsuoka & Ooshima, 2007) and
gait generation in combination with central pattern generators (CPGs) and phase-locked
loops (Inoue et al., 2004; Kimura et al., 1999; Kun & Miller, 1996).

On-line frequency adaptation, as one of the properties of non-linear oscillators (Williamson,
1998) is a viable alternative to signal processing methods, such as fast Fourier transform (FFT),
for determining the basic frequency of the task. On the other hand, when there is no input
into the oscillator, it will oscillate at its own frequency (Bailey, 2004). Righetti et al. have
introduced adaptive frequency oscillators (Righetti et al., 2006), which preserve the learned
frequency even if the input signal has been cut. The authors modify non-linear oscillators
or pseudo-oscillators with a learning rule, which allows the modified oscillators to learn the
frequency of the input signal. The approach works for different oscillators, from a simple
phase oscillator (Gams et al., 2009), the Hopf oscillator, the Fitzhugh-Nagumo oscillator,
etc. (Righetti et al., 2006). Combining several adaptive frequency oscillators in a feedback
loop allows extraction of several frequency components (Buchli et al., 2008; Gams et al., 2009).
Applications vary from bipedal walking (Righetti & Ijspeert, 2006) to frequency tuning of a
hopping robot (Buchli et al., 2005). Such feedback structures can be used as a whole imitation
system that both extracts the frequency and learns the waveform of the input signal.

Not many approaches exist that combine both frequency extraction and waveform learning
in imitation systems (Gams et al., 2009; Ijspeert, 2008b). One of them is a two-layered
imitation system, which can be used for extracting the frequency of the input signal in the
first layer and learning its waveform in the second layer, which is the basis for this chapter.
Separate frequency extraction and waveform learning have advantages, since it is possible to
independently modulate temporal and spatial features, e.g. phase modulation, amplitude
modulation, etc. Additionally a complex waveform can be anchored to the input signal.
Compact waveform encoding, such as splines (Miyamoto et al., 1996; Thompson & Patel,
1987; Ude et al., 2000), dynamic movement primitives (DMP) (Schaal et al., 2007), or Gaussian
mixture models (GMM) (Calinon et al., 2007), reduce computational complexity of the process.
In the next sections we first give details on the two-layered movement imitation system and
then give the properties. Finally, we propose possible applications.

2. Two-layered movement imitation system

In this chapter we give details and properties of both sub-systems that make the two-layered
movement imitation system . We also give alternative possibilities for the canonical dynamical
system.
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Fig. 1. Proposed structure of the system. The two-layered system is composed of the
Canonical Dynamical System as the first layer for the frequency adaptation, and the Output
Dynamical System for the learning as the second layer. The input signal y,,,,(t) is an
arbitrary Q-dimensional periodic signal. The Canonical Dynamical System outputs the
fundamental frequency () and phase of the oscillator at that frequency, ®, for each of the Q
DOF, and the Output Dynamical System learns the waveform.

Figure 1 shows the structure of the proposed system for the learning of the frequency and
the waveform of the input signal. The input into the system y,,,,() is an arbitrary periodic
signal of one or more degrees of freedom (DOF).

The task of frequency and waveform learning is split into two separate tasks, each performed
by a separate dynamical system. The frequency adaptation is performed by the Canonical
Dynamical System, which either consists of several adaptive frequency oscillators in a feedback
structure, or a single oscillator with an adaptive Fourier series. Its purpose is to extract
the basic frequency () of the input signal, and to provide the phase ® of the signal at this
frequency.

These quantities are fed into the Output Dynamical System, whose goal is to adapt the shape
of the limit cycle of the Canonical Dynamical System, and to learn the waveform of the input
signal. The resulting output signal of the Output Dynamical System is not explicitly encoded
but generated during the time evolution of the Canonical Dynamical System, by using a set
of weights learned by Incremental Locally Weighted Regression (ILWR) (Schaal & Atkeson,
1998).

Both frequency adaptation and waveform learning work in parallel, thus accelerating the
process. The output of the combined system can be, for example, joint coordinates of the robot,
position in task space, joint torques, etc., depending on what the input signal represents.

In the next section we first explain the second layer of the system - the output dynamical
system - which learns the waveform of the input periodic signal once the frequency is
determined.

2.1 Output dynamical system

The output dynamical system is used to learn the waveform of the input signal. The
explanation is for a 1 DOF signal. For multiple DOF, the algorithm works in parallel for all the
degrees of freedom.

The following dynamics specify the attractor landscape of a trajectory y towards the anchor
point g, with the Canonical Dynamical System providing the phase @ to the function ¥; of the
control policy:
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Here () (chosen amongst the w;) is the frequency given by canonical dynamical system, Eq.
(10), a7 and B are positive constants, set to a; = 8 and B, = 2 for all the results; the ratio 4:1
ensures critical damping so that the system monotonically varies to the trajectory oscillating
around g - an anchor point for the oscillatory trajectory. N is the number of Gaussian-like
periodic kernel functions ¥;, which are given by Eq. (3). wj is the learned weight parameter
and r is the amplitude control parameter, maintaining the amplitude of the demonstration
signal with r = 1. The system given by Eq. (1) without the nonlinear term is a second-order
linear system with a unique globally stable point attractor (Ijspeert et al., 2002). But, because of
the periodic nonlinear term, this system produces stable periodic trajectories whose frequency
is () and whose waveform is determined by the weight parameters w;.

In Eq. (3), which determines the Gaussian-like kernel functions ¥;, h determines their width,
which is set to i = 2.5N for all the results presented in the paper unless stated otherwise, and
¢; are equally spaced between 0 and 27t in N steps.

As the input into the learning algorithm we use triplets of position, velocity and acceleration
Yaemo(F)s Yaemo (1), and Ggemo(t) with demo marking the input or demonstration trajectory we
are trying to learn. With this Eq. (1) can be rewritten as

i YN Waw,r
Qi % (B:(@-y) —2)==5—— )
Lia ¥
and formulated as a supervised learning problem with on the right hand side a set of local
models w;r that are weighted by the kernel functions ¥;, and on the left hand side the target

function fiare given by frare = n%y""""’ — @ (ﬁz (8 — Ydemo) — rl-iyde,,m), which is obtained by

Ydemo

matching i to Yyeme, z to =§%, and Z to
Locally weighted regression corresponds to finding, for each kernel function ¥;, the weight
vector w;, which minimizes the quadratic error criterion 2

Videmo

Ji = Y2 Wilt) (fuarg(£) — wir(t))’ 5)
t=1

where f is an index corresponding to discrete time steps (of the integration). The regression
can be performed as a batch regression, or alternatively, we can perform the minimization of
the J; cost function incrementally, while the target data points fie(t) arrive. As we want
continuous learning of the demonstration signal, we use the latter. Incremental regression is
done with the use of recursive least squares with a forgetting factor of A, to determine the
parameters (or weights) w;. Given the target data fiae(t) and r(t), w; is updated by

wi(t+1) = wi(f) +¥iPi(t+ 1)r(f)er(t) (6)

2 LWR is derived from a piecewise linear function approximation approach (Schaal & Atkeson, 1998),
which decouples a nonlinear least-squares learning problem into several locally linear learning
problems, each characterized by the local cost function [;. These local problems can be solved with
standard weighted least squares approaches.
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Fig. 2. Left: The result of Output Dynamical System with a constant frequency input and with
continuous learning of the weights. In all the plots the input signal is the dash-dot line while
the learned signal is the solid line. In the middle-right plot we can see the evolution of the
kernel functions. The kernel functions are a function of ® and do not necessarily change
uniformly (see also Fig. 7). In the bottom right plot the phase of the oscillator is shown. The
amplitude is here r = 1, as shown bottom-left. Right: The error of learning decreases with the
increase of the number of Gaussian-like kernel functions. The error, which is quite small, is
mainly due to a very slight (one or two sample times) delay of the learned signal.

1) = L poy - PO
P(t+1) =5 (P,(r) %eri“)r(t)z) @)
er(t) = fuarg () — wi(D)r(b). ®)

P, in general, is the inverse covariance matrix (Ljung & Soderstrom, 1986). The recursion is
started with w; = 0 and P; = 1. Batch and incremental learning regressions provide identical
weights w; for the same training sets when the forgetting factor A is set to one. Differences
appear when the forgetting factor is less than one, in which case the incremental regression
gives more weight to recent data (i.e. tends to forget older ones). The error of weight learning
er (Eq. (8)) is not “related” to e when extracting frequency components (Eq. (11)). This allows
for complete separation of frequency adaptation and waveform learning.

Figure 2 left shows the time evolution of the Output Dynamical System anchored to a
Canonical Dynamical System with the frequency set at (3 = 2 rad/s, and the weight
parameters w; adjusted to fit the trajectory ygemo(t) = sin (27t) + cos (47tt) + 0.4sin(67tt). As
we can see in the top-left plot, the input signal and the reconstructed signal match closely. The
matching between the reconstructed signal and the input signal can be improved by increasing
the number of Gaussian-like functions.

Parameters of the Output Dynamical System

When tuning the parameters of the Output Dynamical System, we have to determine the
number of Gaussian-like Kernel functions N, and specially the forgetting factor A. The number
N of Gaussian-like kernel functions could be set automatically if we used the locally weighted
learning (Schaal & Atkeson, 1998), but for simplicity it was here set by hand. Increasing the
number increases the accuracy of the reconstructed signal, but at the same time also increases
the computational cost. Note that LWR does not suffer from problems of overfitting when the
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number of kernel functions is increased.? Figure 2 right shows the error of learning ¢, when
using N = 10, N = 25, and N = 50 on a signal yg,,,(t) = 0.65sin (27tt) + 1.5cos (47t) +
0.3sin (671t). Throughout the paper, unless specified otherwise, N = 25.

The forgetting factor A € [0,1] plays a key role in the behavior of the system. If it is set
high, the system never forgets any input values and learns an average of the waveform over
multiple periods. If it is set too low, it forgets all, basically training all the weights to the last
value. We set it to A = 0.995.

2.2 Canonical dynamical system

The task of the Canonical Dynamical System is two-fold. Firstly, it has to extract the
fundamental frequency () of the input signal, and secondly, it has to exhibit stable limit cycle
behavior in order to provide a phase signal &, that is used to anchor the waveform of the
output signal. Two approaches are possible, either with a pool of oscillators (PO), or with an
adaptive Fourier Series (AF).

2.2.1 Using a pool of oscillators

As the basis of our canonical dynamical system we use a set of phase oscillators, see e.g.
(Buchli et al., 2006), to which we apply the adaptive frequency learning rule as introduced
in (Buchli & Ijspeert, 2004) and (Righetti & Ijspeert, 2006), and combine it with a feedback
structure (Righetti et al., 2006) shown in Figure 3. The basic idea of the structure is that each of
the oscillators will adapt its frequency to one of the frequency components of the input signal,
essentially “populating” the frequency spectrum.

We use several oscillators, but are interested only in the fundamental or lowest non-zero
frequency of the input signal, denoted by (), and the phase of the oscillator at this frequency,
denoted by ®. Therefore the feedback structure is followed by a small logical block, which
chooses the correct, lowest non-zero, frequency. Determining () and & is important because
with them we can formulate a supervised learning problem in the second stage - the Output
Dynamical System, and learn the waveform of the full period of the input signal.

Fig. 3. Feedback structure of a network of adaptive frequency phase oscillators, that form the
Canonical Dynamical System. All oscillators receive the same input and have to be at
different starting frequencies to converge to different final frequencies. Refer also to text and
Egs. (9-13).

The feedback structure of M adaptive frequency phase oscillators is governed by the following
equations:

3 This property is due to solving the bias-variance dilemma of function approximation locally with a
closed form solution to leave-one-out cross-validation (Schaal & Atkeson, 1998).
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$i = w; — Kesin(¢;) 9)

w; = —Kesin(¢;) (10)

€ = Ydemo — f'7 (11)

=) ajcos(¢;) (12)
i=1

it; = 1 cos()e (13)

where K is the coupling strength, ¢; is the phase of oscillator i, e is the input into the oscillators,
Ydemo is the input signal, 7 is the weighted sum of the oscillators’ outputs, M is the number of
oscillators, «; is the amplitude associated to the i-th oscillator, and 7 is a learning constant. In
the experiments we use K = 20 and 5 = 1, unless specified otherwise.

Eq. (9) and (10) present the core of the Canonical Dynamical System - the adaptive frequency
phase oscillator. Several (M) such oscillators are used in a feedback loop to extract separate
frequency components. Eq. (11) and (12) specify the feedback loop, which needs also
amplitude adaptation for each of the frequency components (Eq. (13)).

As we can see in Figure 3, each of the oscillators of the structure receives the same input signal,
which is the difference between the signal to be learned and the signal already learned by the
feedback loop, asin Eq. (11). Since a negative feedback loop is used, this difference approaches
zero as the weighted sum of separate frequency components, Eq. (12), approaches the learned
signal, and therefore the frequencies of the oscillators stabilize. Eq. (13) ensures amplitude
adaptation and thus the stabilization of the learned frequency. Such a feedback structure
performs a kind of dynamic Fourier analysis. It can learn several frequency components of the
input signal (Righetti et al., 2006) and enables the frequency of a given oscillator to converge
as t — oo, because once the frequency of a separate oscillator is set, it is deducted from the
demonstration signal V,,,, and disappears from e (due to the negative feedback loop). Other
oscillators can thus adapt to other remaining frequency components. The populating of the
frequency spectrum is therefore done without any signal processing, as the whole process of
frequency extraction and adaptation is totally embedded into the dynamics of the adaptive
frequency oscillators.

Frequency adaptation results for a time-varying signal are illustrated in Figure 4, left. The
top plot shows the input signal y,,,,, the middle plot the extracted frequencies, and the
bottom plot the error of frequency adaptation. The figure shows results for both approaches,
using a pool of oscillators (PO) and for using one oscillator and an adaptive Fourier series
(AF), explained in the next section. The signal itself is of three parts, a non-stationary signal
(presented by a chirp signal), followed by a step change in the frequency of the signal, and
in the end a stationary signal. We can see that the output frequency stabilizes very quickly at
the (changing) target frequency. In general the speed of convergence depends on the coupling
strength K (Righetti et al., 2006). Besides the use for non-stationary signals, such as chirp
signals, coping with the change in frequency of the input signal proves especially useful
when adapting to the frequency of hand-generated signals, which are never stationary. In
this particular example, a single adaptive frequency oscillator in a feedback loop was enough,
because the input signal was purely sinusoidal.

The number of adaptive frequency oscillators in a feedback loop is therefore a matter of
design. There should be enough oscillators to avoid missing the fundamental frequency
and to limit the variation of frequencies described below when the input signal has many



