A TOBIAS GEYER

MODEL
PREDICTIVE
CONTROL or

|IGH POWER
CONVERTERS .
DUSTRIAL
DRIVES

WILEY



MODEL PREDICTIVE
CONTROL OF HIGH
POWER CONVERTERS
AND INDUSTRIAL
DRIVES

Tobias Geyer

ABB Corporate Research Center, Baden-Diittwil, Switzerland

WILEY



This edition first published 2017
© 2017, John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United
Kingdom

For details of our global editorial offices, for customer services and for information about how to apply
for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with
the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or

otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior
permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or

registered trademarks of their respective owners. The publisher is not associated with any product or
vendor mentioned in this book

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is
not engaged in rendering professional services and neither the publisher nor the author shall be liable
for damages arising herefrom. If professional advice or other expert assistance is required, the services
of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Names: Geyer, Tobias, 1975- author.

Title: Model predictive control of high power converters and industrial
drives / Tobias Geyer.

Description: First edition. | Chichester, West Sussex, United Kingdom : John
Wiley & Sons, Inc., 2016. | Includes bibliographical references and index.

Identifiers: LCCN 2016014286 (print) | LCCN 2016015090 (ebook) | ISBN

9781119010906 (cloth) | ISBN 9781119010869 (pdf) | ISBN 9781119010890
(epub)

Subjects: LCSH: Electric drives—Automatic control. | Power
converter—Automatic control. | Predictive control.

Classification: LCC TK4058 .G49 2016 (print) | LCC TK4058 (ebook) | DDC
621.46—dc23

LC record available at http://lcen.loc.gov/2016014286

A catalogue record for this book is available from the British Library.

Setin 10/12pt, TimesLTStd by SPi Global, Chennai, India.
Printed and bound in Malaysia by Vivar Printing Sdn Bhd

10987654321



To Luci, David, and Jan



Preface

This book focuses on model predictive control (MPC) schemes for industrial power electron-
ics. The emphasis is on three-phase ac—dc and dc—ac power conversion systems for high-power
applications of 1 MVA and above. These systems are predominantly based on multilevel volt-
age source converters that operate at switching frequencies well below 1 kHz. The book mostly
considers medium-voltage (MV), variable-speed drive systems and. to a lesser extent, MV
grid-connected converters. The proposed control techniques can also be applied to low-voltage
power converters when operated at low pulse number, that is, at small ratios between the
switching frequency and the fundamental frequency.

For high-power converters, the pulse number typically ranges between 5 and 15. As a result,
the concept of averaging, which is commonly applied to power electronic systems to conceal
the switching aspect from the control problem, leads to performance deterioration. In general,
to achieve the highest possible performance for a high-power converter, averaging is to be
avoided, and the traditionally used current control loop and modulator should be replaced by
one single control entity.

This book proposes and reviews control methods that fully exploit the performance potential
of high-power converters, by ensuring fast control at very low switching frequencies and low
harmonic distortions. To achieve this, the control and modulation problem is addressed in one
computational stage. Long prediction horizons are required for the MPC controllers to achieve
excellent steady-state performance. The resulting optimization problem is computationally
challenging, but can be solved in real time by branch-and-bound methods. Alternatively, the
optimal switching sequence to be applied during steady-state operation—the so-called opti-
mized pulse pattern (OPP)—can be precomputed offline and refined online to achieve fast
closed-loop control.

To this end, the research vision is to combine the benefits of deadbeat control methods (such
as direct torque control) with the optimal steady-state performance of OPPs, by resolving the
antagonism between the two. Three such MPC methods are presented in detail.
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