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Driven by elaborate modern technological applications, the relationship between
mathematics and mechanics is continually developing. The burgeoning number of
specialized journals has generated an ever growing duality gap between the partners.
Advances in Mechanics and Mathematics is a series intending to bridge the gap
by providing a platform for the publication of interdisciplinary content with rapid
dissemination of monographs, graduate texts, handbooks, and edited volumes, on
the state-of-the-art research in the broad area of modern mechanics and applied
mathematics. Topics with multi-disciplinary range, such as duality, complementarity
and symmetry in mechanics, mathematics, and physics, are of particular interest.

Contributions are aptly reviewed to guarantee high scientific standards. Monographs
place an emphasis on creativity, novelty, and innovativeness in the field; handbooks
and edited volumes provide comprehensive surveys of the state-of-the-art in par-
ticular subjects; graduate texts may feature a combination of exposition and com-
puter/multimedia, downloadable from the web.

New to AMMA is the welcome addition of publications that focus on computational
methods. Topics can involve theory, algorithms, programming, coding, numerical
simulation, error and uncertainty analysis and/or the novel application of compu-
tational techniques to problems throughout many scientific disciplines. Especially
encouraged are expositions on mathematical and computational models and meth-
ods based on mechanics and their interactions with other fields.

The series is addressed to applied mathematicians, engineers, and scientists, includ-
ing advanced students at universities and in industry, who are interested in mechan-
ics and applied mathematics.

More information about this series at http://www.springer.com/series/5613
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Preface

This book is devoted to an account of theories of thermal convection which involve
local thermal non-equilibrium (LTNE) effects, or are particularly important in a
microfluidic situation. The term “local thermal non-equilibrium™ refers to thermal
convection in a fluid saturated porous material where the fluid temperature and
the temperature of the solid skeleton may be different. Microfluidics refers to fluid
dynamics on a small scale which may involve thermal convection in a clear fluid, or
thermal convection in a fluid saturated porous medium. The areas of microfluidics
and nanofluidics are very topical at present.

This is not an attempt to survey the area of convection with local thermal non-
equilibrium effects, nor that of convection in a microfluidic scenario. Both topics are
extremely popular research areas and such a survey would be a gargantuan task. For
example, if one inserts “local thermal non-equilibrium” in the Springer query box,
12,197 entries are found, on 30th August, 2014. Likewise if one enters the same
expression in the query box of Science Direct, 123,332 entries are found, on 30th
August, 2014. This book is simply an account of what I believe is an appropriate
collection of subjects in a very topical area.

Chapters 2-7 deal specifically with LTNE effects whereas chapter 8 contains
work with LTNE effects and some microfluidic work employing a single temper-
ature. Chapters 9—15 concentrate mostly on microfluidic situations where a single
temperature field is employed although section 15.4 is concerned with LTNE. Sec-
tions 6.1, 6.2, 9.4, 12.3, 13.2, 13.3, 14.2, 14.3, 14.5, 15.3 and 15.4 contain new
material and/or new numerical results which I believe are not available elsewhere.

I should like to thank three anonymous referees for pointed and very useful com-
ments which led to improvements in this book. It is a pleasure to thank Achi Dosanjh
of Springer for her advice with editorial matters. I should also like to thank Jeff Taub
and Suresh Kumar of Springer for their help with Latex and production matters.

This research was in part supported by a grant from the Leverhulme Trust, “Tip-
ping points: mathematics, metaphors and meanings”, reference number F/00128/BF.

Durham Brian Straughan
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Chapter 1
Introduction

1.1 Microfluidics, Local Thermal Non-equilibrium

1.1.1 Applications, Examples

This book focusses on thermal convection problems which are likely to be of interest
in microfluidic situations, i.e. where the dimensions of the spatial configuration of
the phenomenon are very small, although not exclusively so since some of the topics
will be of interest in their own right at the macro scale.

There are a variety of physical mechanisms which will undoubtedly have a major
effect on thermal convection or fluid flows in general when the spatial dimen-
sions of the problem are small. One area involving heat flow is that of second
sound, the mechanism whereby temperature travels as a wave, which in itself is
also a topic of increasing attention. In particular, as modern technology is creat-
ing smaller and smaller devices, the phenomenon of temperature travelling as a
wave becomes increasingly important, especially in metallic-like solids. Pilgrim
et al. [343] develop a mathematical model for finite speed heat transport in semi-
conductor devices and they observe that, ... the “hyperbolic description will become
increasingly important as device dimensions move even further into the deep sub-
micron regime”. Since it is believed finite speed heat propagation is important in cer-
tain metallic material situations, we believe it is worthwhile considering this aspect
in thermal convection flows in porous metallic foams, especially if the device dimen-
sions are small. Various occurrences of finite speed heat transport are reviewed in
the book by Straughan [425]. As he points out, most theoretical work involves the
model proposed by Cattaneo in [79] to govern the behaviour of the heat flux and the
temperature field. The history of the Cattaneo theory is discussed in detail in [425],
chapter 1, where he also notes that a similar model, but in dielectric theory, was
proposed earlier by Dario Graffi [165]. In this book we do consider second sound
effects in thermal convection. Attention is paid to second sound and other physical
effects for thermal convection in both a clear fluid and in a fluid saturated porous
medium.

© Springer International Publishing Switzerland 2015 1
B. Straughan, Convection with Local Thermal Non-Equilibrium and Microfluidic Effects,
Advances in Mechanics and Mathematics 32, DOI 10.1007/978-3-319-13530-4_1



2 I Introduction

Porous media is a subject well known to everyone. Such materials occur every-
where and influence all of our lives. There are numerous types of porous media and
almost limitless applications of and uses for such media. The theory of porous media
is driven by the need to understand the nature of the many such materials available
and to be able to use them in an optimum way.

A key terminology in the theory of porous media is the concept of porosity. The
porosity is the ratio of the void fraction in the porous material to the total volume
occupied by the porous medium. The void fraction is usually composed of air or
some other liquid and since both liquids may be described as fluids we define the
porosity at position x and time 7, £(x,z7) by

fluid volume
(1.1)

€= = . :
total volume of porous medium

Clearly, 0 < & < 1. However, in mundane situations € may be as small as 0.02 in
coal or concrete, see e.g. [312], whereas € is close to | in some animal coverings
such as fur or feathers, [117], or in man-made high porosity metallic foams, [56,
189, 240, 497].

We include photographs of some well known porous materials. Figure 1.1 dislays
wet sand which is a very well known porous material but one with a relatively low
porosity. Figure 1.2 shows natural sandstone found on a beach. This natural sand-
stone has a higher porosity than sand. Figure 1.3 shows lava from Mount Etna in
Sicily, and this lava is another type of porous rock. In figure 1.4 we show a naturally
occurring aggregate found on a beach. This aggregate also has a higher porosity
than sand. The photograph in figure 1.5 displays concrete which has been weath-
ered by the sea. The concrete has a low porosity. Figure 1.6 shows animal fur which
is a good example of a porous medium with high porosity, i.e. porosity close to 1.
Figure 1.7 displays another type of rock but one which is highly anisotropic. Fig-
ure 1.8 displays a highly grained piece of wood (oak). This is another example which
shows that a porous medium may be highly anisotropic. In fact, wood is essentially
isotropic in all directions orthogonal to the grain. The anisotropy is clearly evident
in the grain direction. Anisotropy such as this where one direction is very different
from those directions orthogonal is known as transverse isotropy. Figure 1.9 is a
schematic picture of a bidispersive or a double porosity porous medium. The large
gaps between the dark objects reveal a macro porosity but the darker objects them-
selves are composed of small spheres and have between them a micro porosity. Such
materials may be man made or can occur naturally, cf. [445] for the latter case.

In addition to these we can cite other examples of porous media, such as biolog-
ical tissues, e.g. bone, skin; building materials such as sand, cement, plasterboard,
brick; man-made high porosity metallic foams such as those based on copper oxide
or aluminium, and other materials in everyday use such as ceramics. The types of
porous materials we can think of is virtually limitless.

Applications of porous media in real life and their connection to microfluid flows
are likewise very many. We could list many, but simply quote some to give an idea
of the vastness of porous media theory. Use of copper based foams and other porous
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Fig. 1.2 Natural sandstone. Photograph taken on Seaham beach, March 2014.

materials in heat transfer devices such as heat pipes used to transfer heat from such
as computer chips is a field influencing everyone, see e.g. [57, 189, 269, 312, 497].
Likewise, porous media are prevalent in combustion heat transfer devices where
the porous medium is employed with a liquid fuel in a porous combustion heater,
see [200]. Global warming is very topical and porous media are involved there
in connection with topics such as ice melting, or carbon dioxide storage, see
e.g. [55, 76, 77, 183]. Many foodstuffs are porous materials. Modern technology
is involved in such as microwave heating, [112], or drying of foods or other natural
materials, see e.g. [500, 501]. Porous media have application in storage of energy
or natural convection within the upper region of the Earth, [331, 499]. The latter
areas being of particular interest in the field of renewable energy. There are many
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Fig. 1.4 Natural aggregate. Photograph taken on Seaham beach, March 2014.

other diverse application areas of porous materials, such as heat retention in birds or
animals, [117], bone modelling, [125], or the manufacture of composite materials,
increasingly in use in aircraft or motor car production, see e.g. [108].

Very much connected with thermal convection on a micro-scale are convective
flow problems in a porous medium where the fluid temperature, Tf, may be differ-
ent from the solid skeleton temperature, 7;. Such problems of thermal convection are
being increasingly studied. This situation where the two temperatures may be dif-
ferent is usually referred to as local thermal non-equilibrium, abbreviated to LTNE.
One of the driving reasons for the increased attention of LTNE flows in porous
media is the numerous amount of applications of this area in real life. For exam-
ple, there are applications in tube refrigerators in space, [19]; in nanofluid flows,
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Fig. 1.6 Animal fur is a good example of a high porosity material, as seen in this cat.

[320, 420, 425], chapter 8; in fuel cells [102]; in resin flow, important in processing
composite materials, [108]; in nuclear reactor maintenance, [137]; in heat exchang-
ers, [107, 269]; in microwave ablation of the liver, [208]; in biological tissue anal-
ysis, [493]; in flows in microchannels, [215]; in flow and heat transfer in porous
metallic foams, [189, 240, 241, 269]; in thermovibrational filtration, [388, 389], in
textile transport, [486]; and in convection in stellar atmospheres, cf. [425], chap-
ter 8, [426]. An interesting paper analysing various causes of local thermal non-
equilibrium situations is that of [470].

Continuum theories for local thermal non-equilibrium effects on flow in porous
materials appear to have started in the late 1990’s, cf. the work of [291, 307], and
[340], and instability in thermal convection taking into account LTNE effects was



