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Preface

The goal of this work is to obtain new model structures in homological algebra.
The idea is to construct a pair of compatible complete cotorsion pairs

(AnW,B) and (A,BnW)

related to a specific homological dimension, and then apply Hovey Correspon-
dence to obtain an Abelian model structure where the classes of cofibrant,
fibrant, and trivial objects coincide with A, B and W, respectively.

The contributions presented in this book can be split into two parts. In
the first one, we study the projective, injective, and flat dimensions of ob-
jects in the category Ch(R) of chain complexes of modules, in order to obtain
compatible and complete cotorsion pairs for each of these dimensions, via
the application of techniques such as the zig-zag argument. We recall several
model structures on the category of chain complexes, obtained from the classes
of projective, injective and flat modules, such as the flat and the degreewise
projective model structures mentioned below, and then we will present their
corresponding generalizations to homological dimensions.

In the second part, we restrict our attention to the case where R is
a Gorenstein ring, in which another type of homological algebra appears
in Mod(R) and Ch(R), described by the notions of Gorenstein-projective,
Gorenstein-injective and ‘Gorenstein-flat dimensions. M. Hovey and J. Gille-
spie constructed model structures on Mod(R) having the classes of Gorenstein-
projective, Gorenstein-injective and Gorenstein-flat modules among the cofi-
brant and fibrant objects. We will see how to generalize Hovey’s arguments
to get new Abelian model structures on Mod(R) and Ch(R) from Gorenstein-
homological dimensions.

Some history, from Salce to Hovey

Nowadays, probably among the most important objects in the realm of
homological algebra are the cotorsion pairs. First introduced by Luigi Salce
in the category of groups, they were rediscovered by Edgar E. Enochs for the
category of modules. Colloquially, two classes of modules form a cotorsion pair
if they are orthogonal to each other with respect to the first extension functor

xiil



xiv Preface

Exth(—, —). This definition, which seems to be very simple at first sight, turns
out to have very deep applications in several branches of mathematics, the
Representation Theory of Algebras being probably the most favored.

Two of the most important episodes representing the impact of cotorsion
pairs are linked to some homological conjectures. For instance, the flat cover
conjecture explicitly first stated in 1981 by Enochs in his paper Injective and
flat covers, envelopes and resolvents, remained unsolved for about 20 years. It
asserts the existence of a flat cover for every module. This was proven to be
true in 2001 by Enochs, thanks to some contributions by Paul Eklof and Jan
Trlifaj, and simultaneously and independently by L. Bican and R. El Bashir.

The theory of cotorsion pairs was also used by Lidia Angeleri-Hiigel and
Octavio Mendoza in [AHM0Y] to establish a validity criterion for the second
finitistic dimension conjecture, which states that the little finitistic dimension
of every finite Artin algebra is finite. This has been proved to be true in some
particular cases, such as for finite dimensional monomial algebras. The proof
of the cited criterion uses the fact, proved by S. T. Aldrich, E. E. Enochs,
O. M. G. Jenda and L. Oyonarte, that the class of modules with projective
dimension at most n (with n some positive integer) is the left half of a complete
cotorsion pair.

In 2002, Mark Hovey established a correspondence between the theories
of cotorsion pairs and model structures. Namely, Hovey proved that given an
Abelian model structure on a bicomplete Abelian category, it is possible to
construct two complete cotorsion pairs from the classes of cofibrant, fibrant
and trivial objects of the given model. Moreover, the converse is also true,
that is, if we are given three classes of objects in such a category forming two
compatible and complete cotorsion pairs, then it is possible to obtain a unique
Abelian model structure such that the classes of cofibrant, fibrant and trivial
objects coincide with the given classes.

Hovey’s results provide an easy method to construct model structures on
categories such as modules or chain complexes. Concerning complexes over a
ring or a ringed space, James Gillespie introduced the notions of differential
graded chain complexes with respect to a class of modules. One important
example of an Abelian model structure obtained by Hovey Correspondence is
given by Gillespie in the paper The flat model structure on Ch(R), published
in 2004, by proving that the classes of flat and dg-flat chain complexes are the
left halves of two compatible complete cotorsion pairs.

Another interesting example of a model structure on chain complexes ob-
tained by Hovey Correspondence was given by D. Bravo, E. E. Enochs, A. la-
cob, O. M. G. Jenda and J. Rada in their article Cotorsion pairs in C(RMod),
published in 2012. There they proved that the classes of degreewise and exact
degreewise projective chain complexes are the left halves of two compatible
complete cotorsion pairs.

In this book, we will continue the path started by the mentioned authors,
constructing along the way new model structures from classical and Goren-
stein homological dimensions, and also generalizing and/or reproving some
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important existing results. Let us be more specific about this in the following
paragraphs.

Outline

In Part 1 we introduce some categorical preliminaries and notations. One
of the purposes of this work is to present most of the definitions and results in
a categorical setting, so it is necessary to recall the definitions and notations
of the universal constructions most used in Category Theory. We present each
construction along with a diagram so it will be easier to understand and recall
the concept for the reader who is not familiar with categories. In Chapter 2 we
give a review of Abelian and Grothendieck categories. We present some notions
known in Relative Homological Algebra, such as left and right resolutions
with respect to a class of objects, covers and envelopes, and left and right
homological dimensions. This material is studied in detail in Chapter 3, where
we also present extensions functors in two ways, namely, via cohomologies or
using Baer description. We also show how complexes with bounded projective
or injective dimension can be expressed as exact complexes whose cycles have
projective or injective dimension with the same bound. Torsion functors, on
the other hand, are left for Chapter 4. This chapter begins with the definition
of (closed and symmetric) monoidal categories, and then continues with a
detailed exposition of several examples. We also study two tensor products
of chain complexes, and describe the flat complexes corresponding to each
tensor.

In Part 2, Chapter 7, we present the investigation done by M. Hovey that
connects the theories of cotorsion pairs and model categories. We begin by
giving the definition of weak factorization systems, as the core notion of that
of a model structure. Roughly speaking, a weak factorization system is given
by two classes of morphisms in a category C such that they have a lifting
property with respect to each other and satisfy a certain factorization axiom.
A morphism f: X — Y lifts with respect to a morphism g: W — Z in a
commutative square

w
Jg
Z

if there exists a morphism d: ¥ — W such that the resulting inner triangles
commute:

B —

>

’ﬁ“-u
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l”
Z

On the other hand, the equality Ext>(X,Y) = 0 means that every short exact
sequence of the form

X
f

Al

Y

0-Y Szl xo

splits, that is there is a morphism 8’: X — Z such that S0 3’ = idx. In other
words, we have a commutative diagram

Z

Jﬁ

0

X X

meaning that 0 — X lifts with respect to 8. Hovey noticed this particular
behavior, and established a correspondence for constructing a certain type
of model structure from a pair of cotorsion pairs satisfying a compatibility
condition. Since this correspondence is of vital importance in this work, we
think it is pertinent to present a proof, although in a particular way via the
concept of Abelian factorization systems.

Concerning cotorsion pairs, in Chapter 6 we present a proof of Eklof and
Trlifaj Theorem in Grothedieck categories, originally proven in the category of
modules. We later present some methods developed by J. Gillespie to induce
certain cotorsion pairs in chain complexes from a cotorsion pair in an Abelian
category C. These induced cotorsion pairs involve classes of complexes which
are basically relative versions of differential graded projective and differential
graded injective complexes.

Part 3 is devoted to the study of the relationship between model structures
and classical homological dimensions. We construct six model structures on
the category of chain complexes, namely: the n-projective, n-injective, n-flat,
degreewise n-projective, degreewise n-injective, and degreewise n-flat model
structures. We start with the projective dimension in the category of chain
complexes. In Chapter 9 we work with the category Mod(fR) of modules over
a ringoid R. We prove that the class Proj,,(?R) of n-projective modules over
R (i.e., with projective dimension < n) is the left half of a complete and
hereditary cotorsion pair. We will apply this result to deduce that there is
a unique model structure on the category Ch(R) of chain complexes over R
where the trivial objects are given by the exact complexes, and the trivially

cofibrant objects by the n-projective complexes. We also study properties of
the homotopy category of this model structure, and from them we deduce

|
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other ways to compute extension functors of modules. Later in the following
sections, we present and construct the degreewise n-projective model structure
mentioned before. The case n = 0 proved by J. Rada and coauthors is based
on a famous theorem by I. Kaplansky on projective modules. They prove that
there exists a unique Abelian on Ch(R) where the trivial objects are given
by the exact chain complexes, and the cofibrant objects by the complexes of
projective modules. We generalize this result to projective dimensions n > 0.

Using properties of injective objects in Grothendieck categories and the
theory of induced cotorsion pairs, in Chapter 8 we obtain the dual of the two
previous model structures, namely, the n-injective and degreewise n-injective
model structures on complexes over Grothendieck categories.

Chapter 10 is devoted to constructing the n-flat and degreewise n-flat
model structures on Ch(R). We apply the contents from Chapter 4, and gen-
eralize some zig-zag procedures in chain complexes, to show that the class of
complexes with flat dimension < n is the left half of a complete cotorsion pair.
This class will be the class of trivially cofibrant objects of an Abelian model
structure on Ch(R). We also prove a similar result for the class of complexes
of modules with flat dimension < n.

In Part 4, we focus our attention on a special type of Grothendieck cate-
gories known as Gorenstein categories. They represent, in some sense, a gen-
eralization of the homological algebra occuring for modules over a Gorenstein
ring. On such categories we can construct two model structures with the classes
of Gorenstein-projective and Gorenstein-injective objects as the cofibrant and
fibrant objects, respectively. These classes are also examples of Frobenius cat-
egories, and we will see how to apply this information to present the homotopy
categories of the previous model structures as a generalization of the stable
module category of a quasi-Frobenius ring. We also study Gorenstein-injective
dimensions in Gorenstein categories, and obtain for each n > 0 a model strue-
ture having the objects with Gorenstein-injective dimension < n as the class
of fibrant objects. All of this theory is developed in Chapters 11 and 12.

The Gorenstein-projective dimension and related model structures need to
be studied in the more particular setting provided by modules and complexes
over a Gorenstein ring. In Chapter 13 we obtain model structures on both
categories having the class of objects with Gorenstein-projective dimension
< n as the class of cofibrant objects.

A study of Gorenstein-flat modules is presented in Chapter 14 on mod-
ules and complexes over a Gorenstein ring R. We construct a unique Abelian
model structure on R such that the cofibrant objects are the modules with
Gorenstein-flat dimension < n, and where the trivial objects are given by the
class of modules with finite flat dimension. We show how to obtain the ana-
log of this structure for chain complexes, but in order to fulfill that goal, we
will define and study properties of an alternative notion of cotorsion pairs of
complexes.
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Intended readers

This book is based in the author’s Ph.D. thesis, and so it contains some
new results in relative homological algebra and model category theory. This
could make us think the contents are very technical. However, it has been
written as self-contained as possible, and the chapters are organized to help
the reader to learn the necessary stuff step by step. This work is intended
for graduated students entering the field, and secondly, it can serve as a very
detailed reference for researchers. Some known results by other authors also
also re-proven, using different arguments or from a pedagogical point of view.
Moreover, some folklore results, which would not be easy to find in the liter-
ature, are also proven. Most of the proofs are presented in detail, and all the
necessary references are given.

The author’s results were stated and proven between 2011 and 2013, so
the materials presented in this book are a little bit behind the current state of
the field. That is why some Further Reading sections are included at the end
of some chapters, to recommend more references for a wider understanding of
the subject.
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