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Preface

The research work presented in this book arises from the involvement of
the author in engineering studies of the reliability of drinking water pipes.
This type of infrastructure is organized as a network of pipelines, and failures,
namely leakage or breakage, tend to occur in an aggregative manner on the
same network segments. Building relevant strategies of infrastructure asset
management requires, therefore, accurate modeling tools of the repeated
failures that can affect some pipes, due to the heavy socioeconomic and
environmental consequences of leakage and breakage.

Yves LE Gar
October 2015
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Introduction

Examples of recurrent failures abound in the literature devoted to the
reliability of technical objects, and in many cases, the occurrence rates tend to
increase not only with the ageing of the object, but also with the number of
past failures. The effect of ageing can be relevantly modeled using the now
classical non-homogeneous Poisson process (NHPP), a comprehensive
presentation of which can be found in [LAW 87], and a good example of
application to drinking water pipe failures in [R@S 00]. In this same context
of pipe failures, the PhD work of [EIS 94] emphasizes the critical importance
of past failures. The consideration of the dependency of the failure process on
its past is not a trivial question, and motivates a theoretical effort which the
present book attempts to contribute to.

The basic concept of a stochastic process underlies all developments of the
present work. A stochastic process must be understood as a function X() of
time 7, each X(r) being considered as a random variable (r.v.).

The stochastic process theory is the natural mathematical framework for
studying the repetition of random events of the same kind. As presented by
[COO 02], this question can be addressed from two alternative perspectives,
which are equivalent and respectively consist of modeling:

— either the distribution of successive inter-arrival times;

— or the distribution of the number of events that occur in a given time
interval,



2 Recurrent Event Modeling Based on the Yule Process

The method chosen by [EIS 94] arises from the first approach. The
“classical” presentation of [ROS 83] arises from the second approach. The
linear extension of the Yule process (called LEYP throughout the rest of the
book) aims at building a failure occurrence model that cumulates the
advantages of both NHPP and [EIS 94]’s approaches. This involves a
theoretical setup, focused on the counting process concept, which is to be
developed throughout the next two chapters.

A counting process is a particular stochastic process, simply designed to
count repeated events, as presented in section 1.2.1.

As this presentation is to have a general scope, the entity subjected to
repeated failures will be called a technical object or more simply an object,
this term will be replaced by “water main” or “water pipe” when the context
refers more specifically to failures that affect a water network.

1.1. Notation

The following mathematical notations will be used throughout this book:

— IN and IN* respectively denote the sets of natural integers {0, 1,2, ..., 00}
and the set of strictly positive natural integers {1,2,..., oo},

- R, R, and R} are the real sets | — oo, 400, [0, +0o[ and 0, +oo[ ;

—P(A) and P (A | B) respectively denote the probability of the event A, and
the conditional probability of A given that the other event B occurs;

—P(A N B) and P (A, B) equivalently denote the joint probability of events
Aand B ; P (ﬂ A j) more generally stands for the joint probability of events
A j',

—1t € R, is a positive time variable that stands for the age of a technical
object;
— N(1) € N is an integer-valued step function that counts the failures;

—dN(t) = N(t+dt)—N(1) is the differential of N(r), i.e. dN(f) = 1 whenever
a failure occurs within [z, + d¢[, dN(1) = 0 otherwise;

— AN(t) = N(tr) = N(t-) stands for the increment of N(t) at t;
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— Ma, stands for the auto-exciting o-algebra generated by the process N(7)
within [a, ] ;

— ./4;_ stands for the auto-exciting o-algebra .Afp ,;

— Z is a vector of failure factor values specific to a given technical object,
also called “covariates”;

— Zla = Mag V 0(Z) denotes the information on the process Af,
increased by the knowledge of the covariates Z, or more technically the
smallest o-algebra that contains all events composed with events of o--algebras
'/V[a,l[ and o(Z);

— A(t) is a real positive function bounded on any compact interval, and its
integral is A(?) = jg A(w)du;

—EX and E(X | A) respectively denotes the expectation of the random
variable (r. v.) X and its conditional expectation given A;

— Var (X) denotes the variance of the r. v. X;
— U g stands for the uniform distribution on the set E;
— Up,1) denotes in particular the uniform distribution on interval [0, 1] ;

— N(u,0?) stands for the Gaussian distribution with expectation u and
variance o2;

—Po(u) is the Poisson distribution with expectation y € R, ;

— NB(6, p) is the negative binomial distribution with two parameters 6 €
R* and p € [0, 1];

-~ NM(,(p;)j=1,..,n) is the negative multinomial distribution with n + 1
parameters 6 € R} and p; € [0, 1];

keN*and p; € [6:1], where 7‘:1 pi=1

— x*(k) is the Chi-squared distribution with k € N* degrees of freedom:

— L(8) stands for the likelihood of a theoretical process with parameter @
given a sequence of observed events;

— T stands for the product integral operator, which plays the same role for
products as the integral operator f plays for sums;
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— the indicator function I(p) of proposition p takes value 1 if p is true, 0
otherwise;

— 5 At gives the minimum of scalars s and ;
— the operator min() gives the minimum of a collection of values;

— the operator max() gives the maximum of a collection of values.

The calculation lines that build up the proof of a proposition will be closed
by a right-justified O symbol. The text lines that express a remark will be typed
in italic and closed by a right-justified A symbol.

1.2. General theoretical framework

The theoretical approach adopted throughout this book builds on two
essential reference textbooks. The pioneering Statistical Models Based on
Counting Processes [AND 93], by P.K. Andersen, @. Borgan, R.D. Gill and
N. Keiding, emphasizes the power of the concepts of the counting process
and intensity function to rigorously process survival data. More recently,
Survival and Event History Analysis [AAL 08], by 0.0. Aalen, @. Borgan
and H.K. Gjessing, explicitly extends the theoretical framework to properly
handle recurrent event data.

1.2.1. The concept of a counting process

We consider a technical object which is observable in continuous time and
is likely to undergo events of interest, also called failures, at random times T,
with j € N denoting the rank of the failure. The time variable ¢ is measured
since the object considered was put into service, i.e. at = 0, and we will often
use the terms “time” and “age” indifferently. By convention, the failure time
T, is not random and fixed at the time the object began to be observed, at age 0
or later. The random variable T; might then be either the age at the first failure,
or at the first observed failure. The time interval within which the object is
observed will be denoted by [a, b], witha € R, b € RY.

As illustrated in Figure 1.1, the counting process N() is a right continuous
and left-limited integer-valued function that starts at ¥(0) = 0 and increases
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by one unit at each T ;:

Vee{Tj:j=1,...,00}, dN()=1
VYt elT;,Tiyl: j=0,...,00, dN(1)=0

It is moreover assumed that at most one failure can occur at a given time,
and that the process cannot “explode”, i.e. the counting function keeps a finite
value at any finite time:

Vie R,,
P(AN(@) >1)=0
P(N(t) < ) =1

N(t) 4
.,'_. ................................................................... .:,_---
S o
N |
0 % >
0 f fy -+ 1 !

Figure 1.1. Counting process N(r) and differential dN(r)

1.2.2. The intensity function of a counting process

Let A{q, denote the o-algebra o (N(s) — N(a))s¢[q - Informally called the
past in [AAL 08], A, can be seen as the knowledge available about the
process since the beginning of its observation until just before t. This
information is qualified as left-truncated if the failure process is not observed
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since the object was put into service (a > 0), so nothing is known about the
process within [0, a[.

The intensity function of N(z), which we will denote by n(f), can be
heuristically defined as the probability density of a one unit jump at t,
conditional on the past:

PAN(t) = 1 | Afau) = E(dNQ@) | HMay)

Remark 1.1.—1It is here to be stressed that the main modeling effort presented
in this book has consisted of searching for a parametric form as suitable as
possible for E(dN(7) | Aa,). This conditional expectation assumes an
underlying probability distribution for the r.v. N(t) = N(a) | A{qa,, which will
generally depend on the parameter denoted by @; to emphasize the role of @,
the intensity will sometimes be written as Eg (AN(7) | Afa.). A

1.3. The non-homogeneous Poisson process

The NHPP model, as presented by [ROS 83], can be defined as:

DerintTiON 1.1.— The NHPP is defined by the system of equations:

Ve Ry,
N@O0)=0
E(dN(r) | A=) = E(AN(1)) = A(n)dt
Pivotal properties of NHPP are:
— the intensity depends on age t, hence the term non-homogeneous,
— N(t) is Poisson distributed with parameter A(t) = jg A(u)du;,

— N(t) is Markovian, i.e. its distribution does not depend on the trajectory it
took between 0 and —.

The particular intensity function A(f) = 6°~'¢%'# is presented by [LAW 87]
as tractable for practical use. It is the product of two factors:

— an ageing factor 61°~, sometimes called Weibull factor (see [AAL 08)),

—a scale factor ¢Z B, often called Cox factor, for it has initially been
proposed by [COX 72].
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Z is a vector of explanatory variable values, or covariates, which can be
either categorical or quantitative, and characterize the technical object or its
environment. £ is a vector of regression coeflicients that account for the
effects of the covariates on the process intensity. The first components of Z
and B are respectively 1 and S, and define the baseline intensity, when all
other covariate values are 0. The exponential form in the Cox factor make
covariates act multiplicatively on the intensity, which makes us qualify this
form of NHPP as proportional hazard model (PHM), sometimes also called
Cox model.

1.4. The Eisenbeis model

In the model of [EIS 94], which from now will be refered to as the Eisenbeis
model, the successive inter-event times are random variables X; = T; - Tj_
defined by R, which are indexed by the event occurrence rank j € IN, and
follow Weibull distributions with parameters y; and 6; that depend on j. The
cumulative distribution function (CDF) of X; is written as:

VxeR+,VjeN,P(Xj < xluj,dj) =1 —exp(—x‘s»'e”f)

The parameter u; is moreover defined as a linear combination VAY: ; of
explanatory variables (covariates), which can be either categorical or
quantitative, and characterize the technical object or its environment. In the
technical context of the Eisenbeis model, water mains are characterized by
their diameter, length, location under roadway or sidewalk, type of
embedding soil, etc. B; is a parameter vector, specific to event rank j. As
NHPP, this model is thus also a PHM. The components of vectors Z and B;
are indexed by convention from 0 to g, where ¢ is the actual number of
covariates; a numerical covariate counts indeed for one, whereas a categorical
covariate with m possible values counts for m — 1 actual covariates (i.e. m — 1
indicator variables).

The Eisenbeis model can also be reformulated as the counting process N(7)
of the number of events undergone by the object within interval [0, f]:
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DeriNiTION 1.2.— The Eisenbeis model is defined by the system of equations:

Vit E]Tj_l, TJ],V] e IN*,
NO)=0 ”
E(dN(t) l N(t_) = j_ 1) = 5J(I = TN(I_))ﬁf—]ezlﬂ/d[

where by convention Ty = 0 at installation of the water main.

To not have to estimate too many parameters, [EIS 94] proposes to simplify
the dependency of 6; and B; on j by grouping the values of j into three strata:

— Stratum I for j € {1},
— Stratum I for j € {2, 3,4}
— and Stratum III for j € {5,6,...},

and by fixing also é;;7 = 1 in the third stratum.

The respective definitions 1.2 and 1.1 of Eisenbeis and NHPP models
highlight an essential difference: the intensity of Eisenbeis model strongly
depends on the failure rank, whereas the NHPP is mainly driven by the
process age. The counting process based on the Eisenbeis model is
additionally not Markovian, as its distribution depends on the ages at the
previous failures.

1.5. Other approaches for water pipe failure modeling

There is an extensive amount of international literature devoted to the
modeling of repeated water pipe failures. A relevant overview covering
publications since 1979 is given by [KLE 01], more recently completed by
[BER 08, BUR 10] and [STC 12]. It is to be noticed that, except for the works
focused on inter-failure times, the theoretical framework of stochastic
processes is never mentioned. This tendency seems to want to last, since most
recent publications, such as [DEB 10] and [YAM 09], promote generalized
linear models; [DEB 10] considers the occurrence of at least one failure
within time intervals of some years as Poisson distributed, whereas [YAM 09]
considers shorter time intervals of some months and the binomial distribution.
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1.6. Why mobilize the Yule process?

Definition 1.2 of the Eisenbeis model involves an important limitation:
estimating parameters by means of observed data is only possible provided
that the technical objects are observed since their installation; if observation is
oppositely restricted to an age interval [a, ] where a > 0, event ranks are
unknown and the model cannot therefore be applied.

Practical applications, reported by [LEG 00], have however been carried
out to get around the left-truncation issue:

— by consenting to consider that 1 = 0 at the beginning of the observation
window;

—and by introducing, in log transforms, the age at the previous failure as
well as observed failure ranks as covariates.

Results are interesting on the whole, and show an advantage over NHPP in
detecting the water pipes that are the most likely to fail. The Eisenbeis model
turns out to be an interesting tool for prioritizing water main renovations or
replacements. Predictions of future failure numbers have however always
included an embarrassing overestimation tendency. The NHPP, on the other
hand, poorly detects water pipes likely to fail, but provides unbiased average
predictions. Implementing the Eisenbeis model requires moreover time
consuming Monte Carlo computations to get around the impossibility of
literally calculating the convolution of Weibull distributions. By contrast,
NHPP allows very simple and quick prediction computations.

Investigating the use of the Yule process is then fully justified by the
search of a model that would combine the advantages of both Eisenbeis and
NHPP models, namely a good ability to detect the objects most likely to
undergo future failures, and to provide unbiased and easy to compute
predictions. The intensity of the searched process should increase both with
age and past failures. The idea to exponentially combine distributed
inter-arrival times, the parameter of which depends on the event rank, is
mentioned by [LEG 01], who refers to Furry distribution (sometimes also
known as the Yule—Furry distribution). The work of [PEL 99] is also to be
mentioned, which presents a rigorous solution to handle the Eisenbeis model
with observations restricted to age intervals [a, b] that do not start at a = 0, by
explicitly calculating probabilities P (N(b) — N(a) = m | N(a) = j), and then



