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Preface

During the past few decades the increasing complexity of the economy and
the rapid growth of technology have put ever-increasing demands on
mathematics. New problems have required solution. Many such problems
were amenable to mathematical formulation, but fewer and fewer could be
solved in closed form. The traditional notions about solutions of mathemati-
cal models had to be re-evaluated.

The ready availability of computers offered an easy way out of this
difficulty. Problems were solved numerically. An explosive development of
numerical methodology ensued. After a few decades of this development it
became clear, however, that numerical solutions cannot always be con-
sidered satisfactory, no matter how accurate and fast. A numerical solution
is only a set of numbers applicable to one particular set of numerically
specified conditions. A set of numbers may fail to give insight into a
situation: for instance, numerically obtained solutions cannot tell whether or
not the response of a system under study is, say, continuous or stable. When
a model cannot be solved with all ‘possible boundary conditions, the possibil-
ity of some surprise cannot be ruled out.

It is necessary to complement numerical mathematics by a methodology
capable of providing the missing insight into the nature, stability and
sensitivity of numerically obtained solutions. The ideas utilized for this
purpose were borrowed and combined from several hitherto abstruse
branches of mathematics. .

Some of the results obtained from this new line of research have been
amazing. It was discovered, for instance, that, as a rule, the stability of a
system breaks down only according to certain relatively simple patterns that
can be described explicitly. This is the central result of elementary catas-
trophe theory. It was also discovered that a well-determined system may
respond to very regular stimuli in a totally chaotic manner. The comfortable
conceptual dichotomy, deterministic versus stochastic, was severely shaken.

This book grew out of two seminars on stability, singularities and
catastrophes. The participants were faculty and doctoral siudents in en-
gineering and the social sciences. Before any substantive issues could be
discussed, a large amount of background material had to be covered: the
book discusses subjects in which the existing literature was inadequate, for
one reason or another.

ix



Preface

The book is aimed at the well educated nonspecialist who has a strong
motivation. Since the prospective reader may not have the benefit of a
general background context for the theory, I differ from the usual style of
writing mathematics in laying heavy emphasis on motivation. Although
certain specialists may disapprove of such an approach, an example illus-
~ trates my reasons: I have included a detailed systematic analysis of the
canonical elementary catastrophes. An elementary catastrophe is a family of
real-valued functions that is specified only in a rather vague, topological
sense. It may seem, therefore, pointless to carry out a detailed classical
analysis of an arbitrarily chosen particular representative of the family. Yet,
after several different attempts, including the use of computer-generated
pictures, this was the only method I could find to elicit the “Aha!” reaction
from my audience. What may appear to be false starts and chatty explana-
tions are included in several places for similar reasons. Otherwise I have
tried to keep a gradual movement from the simple toward the more abstract.
Each chapter is closed by a terse and rigorous summary of the main ideas
and by a short guide to the literature.

Gainesville, Florida AM.
May 1985
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Introduction

Catastrophe theory is a branch of mathematics. It grows where algebra,
calculus, and topology meet each other, and is concerned with the study of
real-valued functions of several real variables.

If some partial derivative of a real-valued function is non-zero at some
point of its domain, the behavior of the function near this point can safely be
predicted from this fact. The linear terms of the Taylor expansion determine
the qualitative behavior of the function. Such points are said to be regular.

If all partial derivatives of the function are zero at some. point, almost
anything can happen. The function may have a minimum, a maximum, a
saddle, or it can be even more complicated. Such points are called critical
points.

Is it possible to describe all varieties of behavior at a critical point? Since
the answer is negative, we must be content with something less. In a sense,
catastrophe theory was concelved when this question was first asked in a
different way-

Let us suppose that a real-valued functmn of several variables is per-
turbed slightly. What can be said about the result? It turns out that a regular
point will remain regular. If the function has a non-degenerate minimum,
maximum, or saddle, the perturbed function will again have a minimum, a
maximum, or a saddle close to the original one. If a function has a critical
point that is none of the above, the outcome depends on the nature of that
critical point and on the particular perturbation. Suchcritical points are
called degenerate. e

Suppose now that we wish to study this case. We cannot reasonably ask
what could happen when a function with a degenerate ‘critical point is
perturbed since, as it was just mentioned, anything could happen. We can
however ask what will typically happen.

Catastrophe theory in the strict sense, more properly called elementary
catastrophe theory, specifies the meaning of ‘typical’ and then sets out to
answer tll]s question. Since even this is too ambitious, a complete answer is
not expected. Instead we find complete answers for specialized versions of
the question.

Searching for the outcome of a perturbation is not a purely mathematical
pastime. Functions are used to model natural or social phenomena. A model

1



introduction

is useful only if it reflects some observable phenomenon. An observable
phenomenon has to persist for a finite time interval. Since any physical,
biological, or social system interacts constantly with its environment, it is
always subject to perturbations of some kind. If a phenomenon persists for
some time interval, no matter how short this interval is, it has to be stable in
some sense. Any mathematical model of the phenomenon, such as a
function, should reflect this ability to withstand small perturbations. It
should also be stable.

Sudden drastic transitions of a physical, biological, or social system from
one state to another are of much interest. The state before the transition as
well as the state after the transition persist, but the act of the transition is
ephemeral. The observer will notice the fact that the transition has occurred
but it is virtually impossible to freeze the system in the state of transition. In
other words, the states before and after the transition are stable, but the
state in between is not. If it were, it would be a third stable state and we
would be forced to investigate two transitions.

Any mathematical model of the state before the transition should be
stable. The same is true for any model of the state after the transition. What
about the instant of the transition? Since it is ephemeral, unstable, it should
be modeled by an unstable mathematical object, such -as an unstable
function. This unstable function should, however, be somehow related to the
two stable ones, to the models of the two stable states before and after the
transition. When the model of the transition is perturbed, it should change
to either the one or the other of those two stable models.

The next natural question is: how to model the phenomenon of the
transition itself. The model should be some mathematical object that con-
tains all the above, and more. The transition from one state to another has
been observed. In this sense it is a stable phenomenon, and its mathematical
model should be stable.

When we attempt to unite all these requirements into a useful mathemati-
cal notion, the result is a family of functions. This family is the model of the
transition from one state to another. The members of the family fall into
three distinct groups. Those in the first group are stable and they are all very
much alike. They represent the state of the system in its various phases of
evolution before the transition. Those in the second group are also stable
and they are also alike, but differ from the members of the first group. They
represent the state of the system in its various phases of evolution after the
transition. The two groups are separated by an unstable member that is
unstable because it bears all the marks of both groups. This unstable
member represents the instance of transition from one state to the other.
Although the family contains unstable elements, it should be stable as a
whole since it represents an observable phenomenon, the state transition.

From this point of view it is not enough to study functions with degener-
ate critical points. They should be studied in context. Embed them into a
family of functions so that they are surrounded by stable neighbors and in
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such a manner that the resulting family as a unit is stable. Such families
would then be the appropriate models for state transitions.

A sudden change of the state of a system may be catastrophic for the
participants in the change. From this observation it is only a short step to
call all such changes catastrophes, especially when the term is coined in an
environment with a highly developed sense for dramatic expressions. If so, it
is only logical to also call the mathematical models representing these
changes by the same name. Thus we come to the mathematical notion of a
catastrophe: a stable family of functions that contains unstable members.

The study of such families uses tools that are unfamiliar to all but a few
experts. To make things even more difficult, even familiar tools are some-
times used in unfamiliar ways. This has created a wide gap between the few
who understand, and the multitude who do not.

The literature responded to this situation with books that attempt to
convey the results, without really bridging the gap. This book is an attempt
at bridging the gap.

The reader is assumed to be college educated with the usual two or three
calculus classes and some sprinkling of other mathematical background. In
addition, he should be intellectually curious and possess some patience for
digesting unfamiliar concepts. The book will build a bridge from calculus
classes to the better quality catastrophe theory literature. As an added
bonus, the reader will learn about several subjects that are omitted from
most textbooks‘and college courses. These subjects are either not taught yet,
or else they are simply assumed to be known already.

As is always the case in scientific inquiry, the search for pertinent notions
and methods leads to new problems. The newly developed methods can be
used to answer new questions, the new notions start a life of their own.
After a while it is hard to tell where the answer to the original question ends
and where some new branch of inquiry has just started. So it is hard to tell
where the boundaries of catastrophe theory are.

Catastrophe theory means different things to different authors. To the
reader of this book it will mean a branch of mathematics. To readers of
popular science magazines it means fancifully curved surfaces with catchy
names, like cusp, butterfly and umbilic. They seem to somehow explain alls
sorts of surprising events, like the collapse of the stock market, the outbreak®

- of war, or the biting of dogs.

From the viewpoint of its founder, René Thom, catastrophe theory is not
a specified body of knowledge but rather a scientific program. It seeks to
find explanations to the variety and evolution of forms in nature. A theory
of morphogenesis. ‘... many phenomena of common experience, in them-
selves trivial (often to the point that they escape attention altogether!)—for
example, the cracks in an old wall, the shape of a cloud, the path of a falling
leaf, or the froth on a pint of beer—are very difficult to formalize, but is it

not possible that a mathematical theory launched for such homely
phenomena might, in the end, be more profitable for science?” Thom (1975).
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A few more quotations should illustrate the range of views about the
nature of catastrophe theory.

‘Catastrophe theory is a new mathematical method for describing the
evolution of forms in nature.” Zeeman (1976)

‘Catastrophe theory is a controversial new way of thinking about
change . .. Woodcock and Davis (1978)

‘As a part of mathematics, catastrophe theory is a theory about sin-
gularities. When applied to scientific problems, therefore, it deals with the
properties of discontinuities directly, without reference to any specific un-
derlying mechanism.” Saunders (1980)

‘Catastrophe theory attempts to study how the qualitative nature of the
solutions of equations depends on the parameters that appear in the
equations,” ... ‘Elementary catastrophe theory is the study of how the
equilibria Y;(C.) of V(y4;C,) change as the control parameters C,
change.” Gilmore (1981)



1 Coordinate systems

One characteristic feature of catastrophe theory is the free use of all kinds of
non-Cartesian coordinate systems. Very often, the specific form of the
system is not described. Statements like this are common: ‘There is a
coordinate system such that . . .’. For this reason our first task is to extend the
notion of a coordinate system, so that we can feel comfortable with a more
relaxed use of it.

A coordinate system is a labeling system. Each element in a set of objects
is assigned a label and distinct elements receive distinct labels. The labels
are usually ordered n-tuples of real or complex numbers. The sets to be
labeled by coordinates are lines, surfaces, spaces.

When' the term coordinate system is mentioned most of us will, almost
automatically, think of two or three mutually perpendicular straight lines
with some points marked on them. We think of a Cartesian system. The
simplicity of the Cartesian system is so successful that it pervades most o:
our ideas. 2

The widespread use of the Cartesian system is motivated by its mathemat-
ical convenience rather than by some inherent property of the problems for
which it is used. A resource allocation problem, for instance, may deal with
various activities that are related to each other only thréugh their use of
common resources. Yet it is customary to treat these activities as if an
intrinsic geometric relationship existed between them, as if they were
mutually perpendicular to each other; that is, the problem is exhibited in a
Cartesian coordinate system. This is done for convenience, and for lack of
a better alternative.

Compare the resource allocation problem with that of satellite motion or
the motion of a'pendulum. When studying circular type motions the analyst
is almost forced to use a poiar, or a cylindrical coordinate system.

The inadequacy of a coordinate system is often revealed by a need to
change it: well-known examples are the sequence of coordinate changes
required to find the optimal solution to a linear program or to diagonalize a
quadratic form. The technique of integration by substitution is nothing but a
skillful change of coordinates which is forced on us by the nature of the

integrand.



Coordinate systems
1.1 Coordinates on a straight line

The usual method of assigning coordinates to a straight line is well known.
Two distinct points are chosen on the line, the number O is arbitrarily
assigned to one of them and the number 1 to the other. Then any arbitrary
point p is assigned a real number by comparing the length and direction of
the segment [0, p] with the length and direction of segment [0, 1]. This is a
simple and useful but rigid rule.

Far more flexible rules can be obtained by realizing that the major
purpose of coordinates is identification: namely, assigning a name to each
and every point such that distinct points have distinct names. With this
general notion in mind we come to the following, tentative definition:

A coordinate system on a straight line L is an injective map ¢:L — R
from the line L into the set of real numbers R. Every point p on the line L
has a coordinate ¢ (p) € R, and distinct points have distinct coordinates. The
map ¢ is variously called a coordinate map, a coordinate function, a coordi-
nate system, or a chart map. The inverse map ¢ ': ¢(L)— L is called a
parametrization of the line L.

It is helpful initially to identify the set R of real numbers with a straight
line given coordinates in the above way. With this picture in mind the
coordinate function ¢ can be visualized as an injection from the line L to be
assigned coordinates into the model line R (Fig. 1.1).

L P

R =y T T T T
-2 -1 0 1 ¢(p) 2

Figure 1.1

The same straight line L can just as easily be assigned coordinates by
means of another injection : L — R. If this is done, it is of interest to know
how to find the y-coordinate of a point p € L identified by its ¢-coordinate,
or vice-versa. This is easy to achieve. The ¢-coordinate of p is ¢(p) and the
Y-coordinate is Y(p). If x=4¢(p)eR is given, then p=4¢ (x) and the
Y-coordinate of the same point is therefore y = Y(p) = Y[¢ (x)]. If yeR is
known, we obtain x = ¢[¢(x)]. This can easily be seen in Fig. 1.2.

L kel
- v
// v
e i e : 7

Figure 1.2l
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1.1 Coordinates on a straight line

A change in coordinates is thus accomplished by the composite maps
h=yedp™ and h™ =¢oy !, called transition maps. Yo¢ ' is read ‘the
inverse of ¢ followed by ¢’, and it is defined by Yo (x) = Y[ (x)] (see
Appendix).

The conceptual plcture presented above is quite clear. It helps to clarify
several practical procedures. It is not, however, an accurate picture of
practical attitudes. In everyday practice it is the coordinates rather than the
coordinatized points that play the leading role. Very often L coincides with
R and we have to force the above framework by imagining two copies of R
with the identity map as the coordinate map between them. Except for
mechanics and some other disciplines which study phenomena in the space
of our everyday experience, geometric objects like lines are only used as
mathematical abstractions. The primary, directly observable, objects in, say,
an economic problem are numbers.

It may happen that the way the real numbers naturally enter into some
expression is inconvenient. If so, a substitution may solve the difficulty.
Integration by substitution is perhaps the best known and most widely used
example.

A substitution is the replacement of the values of a variable by the values
of a bijective (one-to-one and onto) function. A long chain of substitutions
may become quite ¢confusing. The interpretation of subsiitutions as coordi-
nate changes is an excellent conceptual framework for avoiding the confu-
sion.

In spite of the fact that the coordinates x € R and the coordinate changes
h=y°¢ " are the mathematical concepts of immediate practical interest,
the clear conceptual distinction between the set L to be coordinatized and
.usually thought of as a geometric object, and its model R, together with the
notion of the coordinate maps ¢, i, smphfy the understanding of many
intricate problems.

A simple example may be helpful here. Suppose that for some reason we
have to make the following substitution on the real line: y=x>+x. We
observe first that the transition map h: R— R defined by h(x)=x>+x is a
strictly increasing, infinitely differentiable function on the whole real line
whose derivative h'(x)=3x?+1 is everywhere positive. Since h is strictly
increasing, it is bijective. It has an inverse h—': R — R. Its inverse is also
infinitely differentiable by the inverse function theorem (see Chapter 3).

One possibility for putting this substitution into the above theoretical
framework could be the following. Take three copies of the real line (see
Fig. 1.3).

e
it



Coordinate systems

The line in the middle is the set L to be coordinatized, the ones on the top
and on the bottom are the two models of L. Take the identity map
x=d¢(p)=p as the coordinate system ¢: L — R.

For the second coordinate system choose the bijection y: L — R defined
by y=u(p)(=h(p))=p>+p. The resulting transition map $°¢~" is then
indeed h(x)= [P '(x)]=x3+x.

In general, any substitution h can be thought of as the composition Yo¢*
with ¢ =identity and ¢y=h. It could just as well be thought of as the
composition of ¢ *=h and = identity, of course.

The notions of coordinate maps and transition maps, as just defined, are
too general to be of any real use. Some additional requirements are usually
imposed on these maps. The least to be expected from a coordinate map is
that the coordinates of points that are ¢lose to each other should also be
close to each other and, conversely, if the coordinates are close, the points
should also be close. This can be expressed by saying that both the
coordinate map and its inverse, the parametrization, should be continuous.
A continuous . bijection whose inverse is also continuous is called a
homeomorphism. Coordinate maps should be homeomorphisnis,

Since compositions of homeomorphisms are homeomorphisms, transition
maps are automatically homeomorphisms. For most purposes this is not
enough, however. The real line can be both the domain and the range of
functions. Functions may possess desirable properties like differentiability or
analyticity. A change of coordinates should not destroy those properties. For
this reason any of a whole scale of successively stronger requirements may
be imposed on the transition maps: continuous differentiability, twice con-
tinuous differentiability, ..., k-times continuous differentiability, .".., in-
finite, sometimes called indefinite, continuous differentiability, or even
analyticity. We may even want the transition map to be an affine linear
function or a homogeneous linear function. As may be apparent from the
context, in each of these cases the inverse transition maps should possess the
same property.

A differentiable map with a differentiable inverse is called a diffeomorph-
ism. This term is used in a variety of senses depending on the degree of
differentiability required. As was mentioned in the previous paragraph, the
requirement can vary from once continuous differentiability to analyticity.
An overworked, but expressive, colloquialism very often used here is
‘smooth’. It may mean anything from once continuously differentiable to
indefinitely continuously differentiable, depending on the context.

In case L = R, the simplest way to ensure the smoothness of the transition
maps is to take diffeomorphisms as coordinate maps ¢, 4. This is done in
most cases of everyday practice. In particular, we take diffeomorphisms as
coordinate maps throughout this book.

The greater generality gained by allowing the coordinate maps to be
homeomorphisms becomes significant when the ideas of coordinate systems
- and transition maps are applied to more abstract spaces to create the general



