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Preface

In these notes we discuss some of the issues which arise when the partial
differential equations (pdes) modeling option and bond prices are to be
solved mumerically. A great variety of numerical methods for this task can
be found in textbooks and the research literature, and all are effective for
pricing Black Scholes options on a single asset and bonds based on a one-
factor interest rate model, particularly when prices far enough away from
expiration are to be found.

However, there are financial applications where pde methods have to
cope with uncertainty in the problem description, with rapidly changing
solutions and their derivatives, with nonlinearities, non-local effects, van-
ishing diffusion in the presence of strong convection, and the “curse of
dimensionality” due to multiple assets and factors in the financial model.
All these complications are inherent in the pde formulation and must be
overcome by whatever numerical method is chosen to price options and
bonds accurately and efficiently.

The focus of these notes is on identifying and discussing these compli-
cations, to remove uncertainty in the pde model due to incomplete or in-
consistent boundary data, and to illustrate through extensive simulations
the computational problems which the pde model presents for its numerical
solution. We concentrate on pricing models which have been presented in
the literature, and for which results have been obtained with various nu-
merical methods for specific applications. Here we shall search out problem
settings where the complications in the pde formulation can be expected to
degrade the numerical results.

We do not discuss different numerical methods for the pdes of finance
and their effectiveness in solving practical problems. All simulations will be
carried out with the time-discrete method of lines. We view it as a flexible
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tool for solving low-dimensional time dependent pricing problems in finance.
It is based on a solution method which for simple American puts and calls
is algorithmically equivalent to the Brennan-Schwartz method. For multi-
dimensional problems it is combined with a locally one-dimensional line
Gauss Seidel iteration. The method is introduced in detail in these notes.
We think that it performs well enough that we offer the results of our simu-
lations as benchmark data for a variety of challenging financial applications
to which competing numerical methods could be applied.

The notes are intended for readers already engaged in, or contemplat-
ing, solving numerically partial differential equations for options and bonds.
The notes are written by a mathematician, but not for mathematicians.
They are “applied” and intended to be accessible for graduates of programs
in quantitative and computational finance and practicing quants who have
learned about numerical methods for the Black Scholes equation, the bond
equation, and their generalisations. But we also assume that the read-
ers have not had a particular exposure to, or interest in, the theory of
partial differential equations and the mathematical analysis of numerical
method for solving them. There are many sources in the textbook and
research literature on both aspects, a notable example being the rigorous
textbook/monograph of Achdou and Pironneau [1]. But such sources would
appeal more to specialists than to the readership we hope to reach.

These notes are not a text for a course on numerical methods for the
pdes of finance, nor are they intended to answer real questions in finance.
The pde models discussed at length below are drawn from various published
sources and readers are referred to the cited literature for their derivation
and discussion. On occasion the models will be modified because finance
suggests it or mathematics demands it. They will be solved numerically
with assumed data, frequently chosen to accentuate the severity of the
application and the behavior of the solution. Financial implications of our
results will mostly be ignored. Although not a textbook, this book could
serve as a reference for an advanced applied course on pdes in finance
because it discusses a number of topics germain to all numerical methods
in this field regardless of whether the method of lines is ever mentioned.

Both the pde problem specification and its numerical solution will be
of interest. We shall assume that given a financial model for the evolution
of an asset price, a volatility, an interest rate, etc., the pricing pde can be
derived under specific assumptions reflecting or approximating the market
reality. The validity of the pde, usually a time dependent diffusion equation,
is not considered in doubt.
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However, the pde does not constitute the whole model. The pde is only
solvable if the problem for it is (in the language of mathematics) “well
posed”, meaning that it has a solution, that the solution is unique, and
that the solution varies continuously with the data of the problem. If the
pde is to be solved numerically, then in general it must be restricted to a
finite computational domain. In order to be well posed an initial condition
and the behavior on the boundary of the computational domain must be
given. The initial condition is usually the pay-off of the option or the value
of the bond at expiration, both of which are unambiguous and consistent
with the pricing problem being well posed. For options the pay-off tends to
mtroduce singularities into the solution or its derivatives which can make
pricing of even simple options like puts and calls near maturity a challenging
numerical problem.

In contrast to the certainty about initial conditions, the proper choice
of boundary conditions can be complicated. The structure of the pdes aris-
ing in finance can exert a dominant influence on what boundary conditions
can be given, and where, to retain a well-posed problem. This is often
not a question of finance but relates to a fairly recent and still incomplete
mathematical analysis of admissible boundary conditions for so-called de-
generate evolution equations. While the mathematical theory is likely to be
too abstract for the intended readership of these notes, we hope that suffi-
cient operational information has been extracted from it to give guidance
for choosing admissible boundary conditions. The most difficult case arises
when for lack of better information a modification of the pde itself is used
to set a boundary condition on a computational boundary. This aspect of
the pde model is independent of the numerical method chosen for its solu-
tion. However, mathematically admissible boundary conditions are usually
not unique. Some preserve the structure of the boundary value problem re-
quired for the intended numerical method but are inconsistent financially,
while other admissible boundary conditions may be harder to incorporate
into a numerical method but may yield solutions which are less driven by
where we place the computational boundary. Simulation seems the only
choice to check how uncertain boundary data will affect the solution.

The book has seven chapters. Section 1.1 of the first chapter reflects the
view that once a well-posed mathematical model is accepted, then the so-
lution is unambiguously determined and its mathematical properties must
be acceptable on financial grounds. The examples of this section are based
on elementary mathematical manipulations of the Black Scholes equation
and its extensions and formally prove results which often are obvious from
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arbitrage arguments. Section 1.2 concentrates on a discussion of admis-
sible boundary conditions for degenerate pricing equations in finance. It
introduces the Fichera function as a tool to determine where on the bound-
ary of its domain of definition the pricing equation has to hold, and where
unrelated conditions can be imposed. We illustrate the application of the
Fichera function for a number of option problems including cases where
boundary conditions at infinity have to be set. We then consider the prob-
lem of conditions on the boundary of a finite computational domain where
financial arguments often do not provide boundary conditions. We show
that reduced versions of the pde can provide acceptable tangential bound-
ary conditions known as Venttsel boundary conditions.

Chapter 2 introduces the method of lines for a scalar diffusion equation
with one or two free boundaries. It will then be combined with a line Gauss-
Seidel iteration to yield a locally one-dimensional front tracking method for
time-discretized multi-dimensional diffusion problems subject to fixed and
free boundary conditions.

Chapter-3 discusses in detail the numerical solution of the one- dimen-
sional problems with the so-called Ricecati transformation. It is closely
related to the Thomas algorithm for the tri-diagonal matrix equation ap-
proximating linear second order two-point boundary value problems and is
equally efficient.

The next four chapters consist of numerical simulations of options and
bonds. The numerical method chosen for the simulations is always the
method of lines of the preceding two chapters, but the numerical method
intrudes little on the discussion of the pde model and the quality of its
solutions.

Chapters 4 and 5 deal with European and American options priced
with the Black Scholes equation. Comparisons with analytic solutions,
where available, give the sense that such options can be computed to a
high degree of accuracy even near expiration.

Chapter 6 concentrates on fixed income problems based on general
one-factor interest rate models, including those admitting negative interest
rates.

The experience gained with scalar diffusion problems is brought to bear
in Chapter 7 on options for two assets, including American max and min
options. It is shown that on occasion front tracking algorithms for American
options can benefit by working in polar coordinates when the early exercise
boundary on discrete rays is a well defined function of the polar angle.

The last example of an American call with stochastic volatility and
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interest rate suggests that the application of a locally one-dimensional front
tracking method remains feasible in principle but presents hardware and
programiming challenges not easily met by the linear Fortran programs and
the desktop computer used for our simulations.

Throughout these notes we give, besides graphs, a lot of tabulated data
obtained with the method of lines for a variety of financial problems. Such
data may prove useful as benchmark results for the implementation of the
method of lines or other numerical methods for related problems. As al-
ready stated, the financial parameters are only assumed, but our numerical
simulations appear to be robust over large parameter ranges for all the
models discussed here. This may help when the method of lines is applied
as a general forward solver in a model calibration.

Finally, we will admit that the choice of financial models treated here
is more a reflection on past exposure, experience and taste than an orderly
progression from simple to complicated models, or from elementary to rel-
evant models. Our judgment of what questions are relevant in finance is
informed by the texts of Hull [38] and Wilmott [64], while the more math-
ematical thoughts were inspired by the texts of Kwok [46] and Zhu, Wu
and Chern [67], which we value for their breadth and mathematical preci-
sion. So far, the method of lines has proved to be a flexible and effective
numerical method for pricing options and bonds, and as demonstrated in
a concurrent monograph of Chiarella et al. [17], it can hold its own against
some competing munerical methods for pdes in finance. MOL cannot work
for all problems, but we do not hide its failures.

G. H. Meyer



Acknowledgment

[ am grateful to the School of Mathematics of the Georgia Institute of Tech-
nology for remaining my scientific home in the years since my retirement.
Interaction with colleagues, teaching the occasional course, and having ac-
cess to the resources of the School and the Institute have made this time
an unbroken, and unexpected, sabbatical.

The most important resource has been the cooperation of Ms. Annette
Rohrs of the School in producing this book. In spite of a varied and steadily
expanding workload, she has once again managed to turn seribbled and ever
changing notes into a camera-ready book. Without her help T would not
have started this project and could not have finished it. Thank you again,
Annectte.

XV



Preface

Contents

Acknowledgment

1.

Comments on the Pricing Equations in Finance

1.1

Solutions and their properties . . . . . . ... ... .. ..
Example 1.1 Positivity of option prices and the Black
Scholes formulas . . .. ... ... 0oL
Example 1.2 The early exercise boundary for plain Ameri-
can putsand calls . . . .. . ... 000
Example 1.3 Exercise boundaries for options with jump
diffusion . . . .. .o
Example 1.4 The early exercise premium for an American
PUE ¢« v @« s amamue v o w s ¢ ¢ 8 mwwomm e s
Example 1.5 The early exercise premium for an American
RAll . . e e s g md 8 SAPGREERR A
Example 1.6 Strike price convexity . . . . . .. ... ...
Example 1.7 Put-call parity . . . . .. ... ... . ....
Example 1.8 Put-call symmetry for a CEV and Heston
model . . . .. ... .. ...
Example 1.9 Equations with an uncertain parameter
Boundary conditions for the pricing equations . . . . . . .
1.2.1  The Fichera function for degenerate equations
Example 1.11 Boundary conditions for the heat equation .
Example 1.12 Boundary condition for the CEV Black
Scholes equationat S =0 . . .. .. ... .....

xi

cn

10



xii

The Timne-Diserete Method of Lines for Options and Bonds —

Example 1.13 Boundary conditions for a discount bond at
e
Example 1.14 Boundary conditions for the Black Scholes
equation on two assets . . . . . ... .. oL L.
Example 1.15 Boundary conditions for the Black Scholes
equation with stochastic volatility » at S = 0 and
BE=10" 5 8 o 0 cav o wonefes T AL BB e o i om in om arn D o5
Example 1.16 Boundary conditions for an Asian option . .
1.2.2  The boundary condition at “infinity™ . . . . ...
Example 1.17 CEV puts and calls . . . . . . ... .. ...
Example 1.18 Puts and calls with stochastic volatility
Example 1.19 The European max option . . . . . . . . ..
Example 1.20 An Asian average price call . . . . .. . ..
1.2.3  The Venttsel boundary conditions on “far but
finite” boundaries . . . . . ... .. ... ...
Example 1.21 A defaultable bond . . . . . . .. ... ...
Example 1.22 The Black Scholes equation with stochastic
volatility . . . . . . ... ... ... ... ...
1.2.4  Free boundaries . . . ... ... Lo

The Method of Lines (MOL) for the Diffusion Equation

2.1

2.2

2.3

2.4

The method of lines with continuous time

(the vertical MOL) . . . . . . ... ... . ... ......

The method of lines with continuous x

(the horizontal MOL) . . . .. ... . ... ... .....

Appendix 2.2 Stability of the time discrete three-level
scheme for the heat equation . . . . ... .. ...

The method of lines with continuous 2 for multi-

dimensional problems . . . . .. ... ...

Appendix 2.3 Convergence of the line Gauss Seidel
iteration for a model problem . . . . . .. ... ..

Free boundaries and the MOL in two dimensions . . . . .

The Riccati Transformation Method for Linear Two

Point Boundary Value Problems

3.1
3.2
3.3

The Riccati transformation on a fixed interval . . . . . . .
The Ricecati transformation for a free boundary problem

A PDE Approach

37

35
40
42
42
4
45
47

61

63

64

69
71

76
79
81



4.

4

6.

7.

0.

Contents xiii

Example 3.1 A real option for interest rate sensitive
investments . . . . . . . ... .. ... ... 87
Appendix 3.3 Connection between the Riccati transfor-
mation, Gaussian elimination and the Brennan-

Schwartz method . . . . .. ... ... ... ... 88
European Options 93
Example 4.1 A plain Europeancall . . . . . .. ... ... 96
Example 4.2 A binary cash or nothing European call . . . 101
Example 4.3 A binary call with low volatility . . . . . .. 107
Example 4.4 The Black Scholes Barenblatt equation for a
CEV process . . . . . . . . . . 111
American Puts and Calls 117
Example 5.1 An Americanput . . .. ... ........ 117
Example 5.2 An American put with sub-optimal early
CXETCISE . . . v v oo e e e 123
Example 5.3 A put on an asset with a fixed dividend . . . 125
Example 5.4 An American lookback call . . . . . . . ... 129
Example 5.5 An American strangle for power options . . . 135
Example 5.6 Jump diffusion with uncertain volatility . . . 141
Bonds and Options for One-Factor Interest Rate Models 153
Example 6.1 The Ho Lee model . . . . . . ... ... ... 158
Example 6.2 A one-factor CEV model . . . . .. ... .. 161
Example 6.3 An implied volatility for a call on a discount
BOHA . . Giiew w i m v F FEE IEGARBE A3 IR 165
Example 6.4 An American put on a discount bond . . . . 171
Two-Dimensional Diffusion Problems in Finance 181
7.1  Front tracking in Cartesian coordinates . . . . . . . . . .. 185
Example 7.1 An American call on an asset with stochastic
YOlAtAEY. « & o v mm e o e e s e s 185
Example 7.2 A European put on a combination of two
ASSCLS . ... Lo e e 190
Example 7.3 A perpetual American put - MOL with over-
velaxation « s o s w @ v v ow v wm @ s e wen s 197

Example 7.4 An American call, its deltas and a vega . . . 199



xiv The Time-Discrete Method of Lines for Options and Bonds — A PDE Approach

Example 7.5 American spread and exchange options

Example 7.6 An American call option on the maximum of

two assets . . . . ... ..

7.2 American calls and puts in polar coordinates . . . . . . .
Example 7.7 The basket call in polar coordinates . . . . .

Example 7.8 A call on the minimum of two assets . . . . .
Example 7.9 A put on the minimum of two assets . . . . .
Example 7.10 A perpetual put on the minimum of two

assets with uncertain correlation . . . . . .. . ..
Example 7.11 Implied correlation for a put on the sum of

7.3 A three-dimeunsional problem

ftwo assets. . . . . .. ..

Example 7.12 An American call with Heston volatility and

Bibliography
Index

About the Author

a stochastic interest rate

207

212
220
221
223
229

237

239
245

246



Chapter 1

Comments on the Pricing Equations
in Finance

The two dominant pricing equations of these notes are the Black Scholes
equation for the price V' (.S, t) of an option

LisV = 5028V + (r = )SVs =1V =V, =0 (L.1)

for 0 < S < oo and t € (0,77, and the bond equation for the price B(r,t)
of a discount bond

LB = %w?Bw +(u—Aw)B, —rB—B;, =0 (1.2)

for, usually, 0 < r < oo and t € (0,7'], where t =T — 7 for calendar time
7 denotes the time to expiry. Both equations are augmented by the values
V(S.0) and B(r,0) at expiration ¢ = 0 and by boundary conditions on V'
and B which are determined by the specific application. The aim is to
find “a solution” of the pricing equation which also satisfies the given side
conditions.

These equations, and their multi-factor generalizations, are special
forms of a so-called evolution equation

Lu= Z @i (T, ) Uz o, + Zbi(;r, t)uy, +c(x, t)u (1.3)
i,j=1 i=1

+d(x, t)uy = f(z,t)

where A = (a;;j(x.t)) is a symmetric matrix, d(z,t) # 0, and where (z,t) =
(... rm.1) denotes the m+1 independent variables. Typically = belongs
to an open bounded or unbounded set D(t) in R,, with boundary 9D(t),
and ¢ belongs to an interval (0, T']. We remark that time dependent domains
D(t) are common in the free boundary formulation of American options.
If the matrix A in (1.3) is positive definite then the equation is known as
a parabolic or, somewhat imprecisely, a diffusion equation. In finance the
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matrix is often non-negative definite which complicates its analysis. For
simplicity we shall call (1.3) a diffusion equation even if A is only semi-
definite.

The most famous example of a diffusion equation is the simple heat
equation for conductive heat transfer

Lu=ug, —up =0

which often can be solved analytically. It is well known that the Black
Scholes equation (1.1) for constant parameters can be transformed to the
heat equation through a change of variable, and that the corresponding
Green’s function solutions are the Black Scholes formulas for varions Euro-
pean options (see [33] and Example 1.1). When analytic solutions are not
available one usually resorts to numerical solutions.

The partial differential equations of finance are mathematical models
which are derived in many textbooks under specific market assumptions
and simplifications which do not necessarily reflect the market reality (see,
e.g. [64]). But once the model equations and their initial and boundary con-
ditions are accepted, one also has to accept the qualitative and quantitative
behavior of their solutions which is entirely determined by the structure of
the mathematical problem and not the application. One cannot assume a
priori that the mathematical solution will show all the properties which are
obvious for financial reasons. Instead, one has to prove that the mathe-
matical solutions are consistent with financial arguments. If not, the model
would have to be changed.

1.1 Solutions and their properties

The user of the partial differential equations of finance tends to assume
that the mathematical problem has a solution. The user also tends to have
a strong intuitive sense of whether an approximate or numerical solution
is “correct”. To a mathematician the problem is not quite so simple be-
cause the meaning of solution is ambiguous. A problem may not have a
solution in one sense but may well have a unique solution if the class of
admissible functions is broadened by allowing certain types of discontinu-
ities. Moreover, an approximate solution may well solve a closely related
problem while the actual formulation does not have any solution.

There is a comprehensive mathematical theory on the existence, unique-
ness and properties of solutions of parabolic problems (see, e.g. [28], [47],
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[48], and research on its extensions continues unabated. Here, to charac-
terize solutions of differential equations without going into technical detail,
the following few (very loose) definitions are convenient:

Definition. A function u is smooth if it has as many continuous derivatives
as are needed for the operations to which it is subjected.

Definition. A classical solution of (1.3) subject to an initial condition at
t = 0 and to boundary conditions on @D(t) is a function which is continuous

on the closed set D(t) x [0, 7], smooth on D(t) x (0, T], and which satisfies
point for point the equation and the initial and boundary conditions.

Definition. A weak solution is a function which satisfies the equation (1.3)
and the side conditions in an “integral sense” (see, e.g. Section 1.2.1).

For example, the Black Scholes formula for a European put is a classical
solution of the Black Scholes equation (1.1) and the pay-off and boundary
conditions

V(S,0) = max{0. K — S}
V(0,t) = Ke ™, lim V(S.t)=0

S—)rxJ
while the Black Scholes formula for a European digital call with initial
condition

0 S<K

1 S22 K
is not a classical solution because V(S,0) is discontinuous at the strike
price K. Similarly, the solution for an up (or down) and out barrier option
generally has a discontinuity at expiration at the barrier and is therefore
only a weak solution. We mention that classical solutions are always weak

V(S.0) =

solutions.

Many of the coneeptual problems due to discontinuous initial /boundary
conditions can be circumvented if we think of approximating the data by
continuous functions. For example, the digital call V(S,t) may be defined
as

V(S,t) = lim Vi(S,t)

where
0 S<CK—¢
Vi(S,0) =4 (S— (K —¢€))/(2¢) K—e<S<K-+e
1 S>K+e¢



