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Preface |

Essentials of Software Engineering was born from our experiences in teaching
introductory material on software engineering. Although there are many
books on this topic available in the market, few serve the purpose of intro-\
ducing only the core material for a one-semester course that meets approxi- |
mately three hours a week for 16 weeks. With the proliferation of small web
applications, many new information technology personnel have entered the}
field of software engineering without fully understanding what it entails. This |
book is intended to serve both new students with limited experience as well |
as experienced information technology professionals who are contemplating \
a new career in the software engineering discipline. The complete life cycle
of a software system is covered in this book, from inception to release and
through support.

The content of this book has also been shaped by our personal experiences |
and backgrounds—one of us with more than 25 years in building, supporting,
and managing large and complex mission-critical software with companies
such as IBM®, BlueCross BlueShield, MARCAM, and RCA and another with|
extensive expertise in constructing smaller software with Agile methods.

Although new ideas and technology will continue to emerge and some of
the principles introduced in this book may have to be updated, we believe
that the underlying and fundamental concepts we present here will remain.
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Preface to the Third Edition

For this third edition, our goal is, again, to improve the text without growing it beyond
the original intent, which was to include only the essential topics such that they can be
covered within a one-semester introduction to software engineering course. The flow of
the text has also been kept constant throughout the different editions.

Thanks to feedback from many readers and students, we have made numerous cor-
rections and small commentary changes. We have proactively solicited input from those
who have used this as a textbook in their classes and have incorporated many of their
suggestions. As such, we have been joined by a third author, Barbara Bernal, who has
used this book as the text in her introduction to software engineering classes for several
years.

This third edition includes the following main modifications and additions:

m Addition of Scrum method and elimination of some lesser-used processes in
Chapter 5

m Expanded Ul design discussion that includes an example of HTML-Script-SQL design
and implementation in Chapter 7

® Inclusion of “essential samples” for Team Plan, Software Development Plan,
Requirements Specification, Design Plan, and Test Plan, presented in new appendices

= Retitled Chapter 14 from “Epilogue” to “Epilogue and Some Contemporary Issues” to
briefly relate some current issues within software engineering

The first and second editions of this book have been used by numerous colleges and
universities, and we thank them for their patience and input. We have learned a lot in the
process. We hope the third edition will prove to be a better one for all future readers.

Organization of the Book

Chapters 1 and 2 demonstrate the difference between a small programming project and
the effort required to construct a mission-critical software system. We purposely took
two chapters to demonstrate this concept, highlighting the difference between a single-
person “garage” operation and a team project required to construct a large “profes-
sional” system. The discussion in these two chapters delineates the rationale for studying
and understanding software engineering. Chapter 3 is the first place where software
engineering is discussed more formally. Included in this chapter is an introduction to the
profession of software engineering and its code of ethics.

The traditional topics of software processes, process models, and methodologies are
covered in Chapters 4 and 5. Reflecting the vast amount of progress made in this area,
these chapters explain in extensive detail how to evaluate the processes through the
Capability Maturity Models from the Software Engineering Institute (SEI).

Chapters 6, 7, 9, 10, and 11 cover the sequence of development activities from
requirements through product release at a macro level. Chapter 8, following the chapter
on software design, steps back and discusses design characteristics and metrics utilized
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in evaluating high-level and detail designs. Chapter 11 discusses not only product
release, but the general concept of configuration management.

Chapter 12 explores the support and maintenance activities related to a software sys-
tem after it is released to customers and users. Topics covered include call management,
problem fixes, and feature releases. The need for configuration management is further
emphasized in this chapter. Chapter 13 summarizes the phases of project management,
along with some specific project planning and monitoring techniques. It is only a sum-
mary, and some topics, such as team building and leadership qualities, are not included.
The software project management process is contrasted from the development and
support processes. Chapter 14 concludes the book and provides a view of some of the
future topics in our field.

The new appendices for this third edition give readers and students insight into pos-
sible results from major activities in software development. An often-asked question
is what a requirements document or a test plan should look like. To help answer this
question and provide a starting point, we have included sample formats of possible
documents resulting from the four activities of Planning, Requirements, Design, and Test
Plan. These are provided as follows:

m Appendix A Essential Software Development Plan (SDP)
m Appendix B Essential Software Requirements Specifications (SRS)
= Example 1: Essential SRS—Descriptive
= Example 2: Essential SRS—Object Oriented
= Example 3: Essential SRS—IEEE Standard
= Example 4: Essential SRS— Narrative Approach

m Appendix C Essential Software Design
= Example 1: Essential Software Design—UML
= Example 2: Essential Software Design—Structural

= Appendix D Essential Test Plan

Many times in the development of team projects by novice software engineers there is a
need for specific direction on how to document the process. The four new appendices
were developed to give the reader concrete examples of the possible essential outlines.
Each of the appendices gives an outline with explanations. This provides the instructor
with concrete material to supplement class activities, team project assignments, and/or
independent work.

The topical coverage in this book reflects those emphasized by the IEEE Computer
Society-sponsored Software Engineering Body of Knowledge (SWEBOK) and by the
Software Engineering 2004 Curriculum Guidelines for Undergraduate Degree Program in
Software Engineering. The one topic that is not highlighted but is discussed throughout
the book concerns quality—a topic that needs to be addressed and integrated into all

activities. It is not just a concern of the testers. Quality is discussed in multiple chapters
to reflect its broad implications and cross activities.
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Suggested Teaching Plan

All the chapters in this book can be covered within one semester. However, some instruc-
tors may prefer different emphasis:

m Those who want to focus on direct development activities should spend more time on
Chapters 6 through 11.

m Those who want to focus more on indirect and general activities should spend more
time on Chapters 1, 12, and 13.

It should be pointed out that both the direct development and the indirect support
activities are important. The combined set forms the software engineering discipline.

There are two sets of questions at the end of each chapter. For the Review Questions,
students can find answers directly in the chapter. The Exercises are meant to be used for
potential class discussion, homework, or small projects.

Supplements

PowerPoint Lecture Outlines, Answers to End-of-Chapter Exercises, and sample Test
Questions are available for free instructor download. To request access, please visit
go.jblearning.com/Tsui3e or contact your account representative.
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