software
engineering

THIRD EDITION

Frank Tsui
Orlando Karam
Barbara Bernal

M
P
'y
=
=
e
R
e
Q
Tl

Frank Tsui
Orlando Karam

Barbara Bernal
All of Southern Polytechnic State University

[
JONES & BARTLETT
LEARNING

World Headquarters
Jones & Bartlett Learning
5 Wall Street

Burlington, MA 01803
978-443-5000
info@jblearning.com
www.jblearning.com

Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact Jones
& Bartlett Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com.

Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations, professional
associations, and other qualified organizations. For details and specific discount information, contact the special sales de-
partment at Jones & Bartlett Learning via the above contact information or send an email to specialsales@jblearning.com.

Copyright © 2014 by Jones & Bartlett Learning, LLC, an Ascend Learning Company

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form, electronic or
mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permis-
sion from the copyright owner.

Essentials of Software Engineering, Third Edition is an independent publication and has not been authorized, sponsored, or
otherwise approved by the owners of the trademarks or service marks referenced in this product.

The screenshots in this product are for educational and instructive purposes only. All trademarks displayed are the trademarks
of the parties noted therein. Such use of trademarks is not an endorsement by said parties of Jones & Bartlett Learning, its
products, or its services, nor should such use be deemed an endorsement by Jones & Bartlett Learning of said third party’s
products or services.

Production Credits

Executive Publisher: Kevin Sullivan

Senior Developmental Editor: Amy Bloom

Director of Production: Amy Rose

Production Assistant: Eileen Worthley

Marketing Manager: Lindsay White

V.P, Manufacturing and Inventory Control: Therese Connell
Composition: Northeast Compositors, Inc.

Cover and Title Page Design: Kristin E. Parker

Cover and Title Page Image: © Kushch Dmitry/ShutterStock, Inc.
Printing and Binding: Edwards Brothers Malloy

Cover Printing: Edwards Brothers Malloy

Library of Congress Cataloging-in-Publication Data
Tsui, Frank F.
Essentials of software engineering. - Third edition / Frank Tsui, Orlando Karam, Barbara Bernal.
pages cm
Includes bibliographical references and index.
ISBN 978-1-4496-9199-8 (pbk.) -- ISBN 1-4496-9199-4 (pbk.)
1. Software engineering. |. Karam, Orlando. II. Bernal, Barbara. Ill. Title.
QA76.758.T78 2014
005.1--dc23
2012029913

6048
Printed in the United States of America
17 16 15 14 109876543

Preface |

Essentials of Software Engineering was born from our experiences in teaching
introductory material on software engineering. Although there are many
books on this topic available in the market, few serve the purpose of intro-\
ducing only the core material for a one-semester course that meets approxi- |
mately three hours a week for 16 weeks. With the proliferation of small web
applications, many new information technology personnel have entered the}
field of software engineering without fully understanding what it entails. This |
book is intended to serve both new students with limited experience as well |
as experienced information technology professionals who are contemplating \
a new career in the software engineering discipline. The complete life cycle
of a software system is covered in this book, from inception to release and
through support.

The content of this book has also been shaped by our personal experiences |
and backgrounds—one of us with more than 25 years in building, supporting,
and managing large and complex mission-critical software with companies
such as IBM®, BlueCross BlueShield, MARCAM, and RCA and another with|
extensive expertise in constructing smaller software with Agile methods.

Although new ideas and technology will continue to emerge and some of
the principles introduced in this book may have to be updated, we believe
that the underlying and fundamental concepts we present here will remain.

Preface

Preface to the Third Edition

For this third edition, our goal is, again, to improve the text without growing it beyond
the original intent, which was to include only the essential topics such that they can be
covered within a one-semester introduction to software engineering course. The flow of
the text has also been kept constant throughout the different editions.

Thanks to feedback from many readers and students, we have made numerous cor-
rections and small commentary changes. We have proactively solicited input from those
who have used this as a textbook in their classes and have incorporated many of their
suggestions. As such, we have been joined by a third author, Barbara Bernal, who has
used this book as the text in her introduction to software engineering classes for several
years.

This third edition includes the following main modifications and additions:

m Addition of Scrum method and elimination of some lesser-used processes in
Chapter 5

m Expanded Ul design discussion that includes an example of HTML-Script-SQL design
and implementation in Chapter 7

® Inclusion of “essential samples” for Team Plan, Software Development Plan,
Requirements Specification, Design Plan, and Test Plan, presented in new appendices

= Retitled Chapter 14 from “Epilogue” to “Epilogue and Some Contemporary Issues” to
briefly relate some current issues within software engineering

The first and second editions of this book have been used by numerous colleges and
universities, and we thank them for their patience and input. We have learned a lot in the
process. We hope the third edition will prove to be a better one for all future readers.

Organization of the Book

Chapters 1 and 2 demonstrate the difference between a small programming project and
the effort required to construct a mission-critical software system. We purposely took
two chapters to demonstrate this concept, highlighting the difference between a single-
person “garage” operation and a team project required to construct a large “profes-
sional” system. The discussion in these two chapters delineates the rationale for studying
and understanding software engineering. Chapter 3 is the first place where software
engineering is discussed more formally. Included in this chapter is an introduction to the
profession of software engineering and its code of ethics.

The traditional topics of software processes, process models, and methodologies are
covered in Chapters 4 and 5. Reflecting the vast amount of progress made in this area,
these chapters explain in extensive detail how to evaluate the processes through the
Capability Maturity Models from the Software Engineering Institute (SEI).

Chapters 6, 7, 9, 10, and 11 cover the sequence of development activities from
requirements through product release at a macro level. Chapter 8, following the chapter
on software design, steps back and discusses design characteristics and metrics utilized

Preface

in evaluating high-level and detail designs. Chapter 11 discusses not only product
release, but the general concept of configuration management.

Chapter 12 explores the support and maintenance activities related to a software sys-
tem after it is released to customers and users. Topics covered include call management,
problem fixes, and feature releases. The need for configuration management is further
emphasized in this chapter. Chapter 13 summarizes the phases of project management,
along with some specific project planning and monitoring techniques. It is only a sum-
mary, and some topics, such as team building and leadership qualities, are not included.
The software project management process is contrasted from the development and
support processes. Chapter 14 concludes the book and provides a view of some of the
future topics in our field.

The new appendices for this third edition give readers and students insight into pos-
sible results from major activities in software development. An often-asked question
is what a requirements document or a test plan should look like. To help answer this
question and provide a starting point, we have included sample formats of possible
documents resulting from the four activities of Planning, Requirements, Design, and Test
Plan. These are provided as follows:

m Appendix A Essential Software Development Plan (SDP)
m Appendix B Essential Software Requirements Specifications (SRS)
= Example 1: Essential SRS—Descriptive
= Example 2: Essential SRS—Object Oriented
= Example 3: Essential SRS—IEEE Standard
= Example 4: Essential SRS— Narrative Approach

m Appendix C Essential Software Design
= Example 1: Essential Software Design—UML
= Example 2: Essential Software Design—Structural

= Appendix D Essential Test Plan

Many times in the development of team projects by novice software engineers there is a
need for specific direction on how to document the process. The four new appendices
were developed to give the reader concrete examples of the possible essential outlines.
Each of the appendices gives an outline with explanations. This provides the instructor
with concrete material to supplement class activities, team project assignments, and/or
independent work.

The topical coverage in this book reflects those emphasized by the IEEE Computer
Society-sponsored Software Engineering Body of Knowledge (SWEBOK) and by the
Software Engineering 2004 Curriculum Guidelines for Undergraduate Degree Program in
Software Engineering. The one topic that is not highlighted but is discussed throughout
the book concerns quality—a topic that needs to be addressed and integrated into all

activities. It is not just a concern of the testers. Quality is discussed in multiple chapters
to reflect its broad implications and cross activities.

Preface

Suggested Teaching Plan

All the chapters in this book can be covered within one semester. However, some instruc-
tors may prefer different emphasis:

m Those who want to focus on direct development activities should spend more time on
Chapters 6 through 11.

m Those who want to focus more on indirect and general activities should spend more
time on Chapters 1, 12, and 13.

It should be pointed out that both the direct development and the indirect support
activities are important. The combined set forms the software engineering discipline.

There are two sets of questions at the end of each chapter. For the Review Questions,
students can find answers directly in the chapter. The Exercises are meant to be used for
potential class discussion, homework, or small projects.

Supplements

PowerPoint Lecture Outlines, Answers to End-of-Chapter Exercises, and sample Test
Questions are available for free instructor download. To request access, please visit
go.jblearning.com/Tsui3e or contact your account representative.

Acknowledgments

We would first like to thank our families, especially our wives, Lina Colli and Teresa Tsui.
They provided constant encouragement and understanding when we spent more time
with the manuscript than with them. Our children—Colleen and Nicholas; Orlando and
Michelle; and Victoria, Liz, and Alex—enthusiastically supported our efforts as well. We
would also like to thank Han Reichgelt, Dean of the School of Computing and Software
Engineering at Southern Polytechnic State University, and Lisa Rossbacher, President of
Southern Polytechnic State University, for providing us with a supportive and conducive
environment for manuscript research and writing.

In addition, we would like to thank the reviewers who have improved the book in
many ways. We would like to specifically thank the following individuals:
m Brent Auernheimer, California State University—Fresno
= Ayad Boudiab, Georgia Perimeter College
m Kai Chang, Auburn University
m David Gustafson, Kansas State University
s Theresa Jefferson, George Washington University
® Dar-Biau Liu, California State University-Long Beach
m Bruce Logan, Lesley University

m Jeanna Matthews, Clarkson University

Preface

Michael Oudshoorn, Montana State University

Frank Ackerman, Montana Tech

Mark Hall, Hastings College

Dimitris Papamichail, University of Miami

Dr. Jody Paul, Metro State Denver

We continue to appreciate the help from Tim Anderson, Amy Bloom, Eileen Worthley,
and others at Jones & Bartlett Learning.

Any remaining error is solely the mistake of the authors.
—Frank Tsui
—Orlando Karam
—Barbara Bernal

vii

Contents

Preface iii

Chapter 1
1.1
1.2

13
1.4
1.5

Writing a Program 1
A Simple Problem 2
Decisions, Decisions 2

1.2.1 Functional Requirements 3
1.2.2 Nonfunctional Requirements 4
1.2.3 Design Constraints 5

1.24 Design Decisions 6

Testing 6

Estimating Effort 7
Implementations 8

1.5.1
1.5.2
1.5.3
1.54
.35

A Few Pointers on Implementation 8
Basic Design 10

Unit Testing with Junit 10
Implementation of StringSorter 10
User Interfaces 16

Contents

1.6
1.7
1.8
1.9

Chapter 2
2.1

2.2

23

24
2.5
2.6
2.7

Chapter 3
3.1

3.2

Summary 19
Review Questions 19
Exercises 20
Suggested Readings 20

Building a System 23

Characteristics of Building a System 24

2.1.1 Size and Complexity 24

2.1.2 Technical Considerations of Development and
Support 25

2.1.3 Nontechnical Considerations of Development and
Support 29

Building a Hypothetical System 30

2.2.1 Requirements of the Payroll System 30

2.2.2 Designing the Payroll System 32

2.2.3 Code and Unit Testing the Payroll System 34

2.24 Integration and Functionally Testing the Payroll
System 35

2.2.5 Release of the Payroll System 36
2.2.6 Support and Maintenance 36
Coordination Efforts 37

231 Process 37

2.3.2 Product 38

233 People 38

Summary 39

Review Questions 39

Exercises 39

Suggested Readings 40

Engineering of Software 41

Examples and Characteristics of Software Failures 42
3.1.1 Project Failures 42

3.1.2 Software Product Failures 43

3.1.3 Coordination and Other Concerns 44
Software Engineering 45

3.2.1 What s Software Engineering? 45

33

34

35

3.6

3.7
3.8

Chapter 4

4.1

4.2

43

44

4.5

4.6
47

Contents

3.2.2 Definitions of Software Engineering 45

3.2.3 Relevancy of Software Engineering and Software 46

Software Engineering Profession and Ethics 47

3.3.1 Software Engineering Code of Ethics 47

3.3.2 Professional Behavior 49

Principles of Software Engineering 49

3.4.1 Davis's Early Principles of Software Engineering 50

342 Royce's More Modern Principles 52

343 Wasserman’'s Fundamental Software Engineering
Concepts 52

Summary 54

Review Questions 54

Exercises 54

Suggested Readings 55

Software Process Models 57

Software Processes 58

4.1.1 Goal of Software Process Models 58

4.1.2 The “Simplest” Process Model 58

Traditional Process Models 59

42.1 Waterfall Model 59

4.2.2 Chief Programmer Team Approach 61

423 Incremental Model 61

424 Spiral Model 63

A More Modern Process 64

4.3.1 General Foundations of Rational Unified Process
Framework 64

432 ThePhasesof RUP 65

Entry and Exit Criteria 68

44.1 Entry Criteria 69

442 ExitCriteria 69

Process Assessment Models 70

4.5.1 SEl's Capability Maturity Model 70

4.5.2 SEl's Capability Maturity Model Integrated 72

Process Definition and Communication 78

Summary 79

xii

Contents

4.8
4.9
4.10

Chapter 5
5.1
5.2
53

54

5.5
5.6
5.7
5.8

Chapter 6
6.1

6.2

6.3

Review Questions 80
Exercises 80
Suggested Readings 81

New and Emerging Process Methodologies 83

What Are Agile Processes? 84

Why Agile Processes? 85

Some Process Methodologies 86

5.3.1 Extreme Programming (XP) 86

5.3.2 The Crystal Family of Methodologies 91

5.3.3 The Unified Process as Agile 94

534 Scrum 94

5.3.5 Open Source Software Development 96

5.3.6 Summary of Processes 98

Choosing a Process 98

5.4.1 Projects and Environments Better Suited for Each Kind
of Process 99

5.4.2 Main Risks and Disadvantages of Agile Processes 99

543 Main Advantages of Agile Processes 100

Summary 101

Review Questions 101

Exercises 101

Suggested Readings 102

Requirements Engineering 103

Requirements Processing 104

6.1.1 Preparing for Requirements Processing 104

6.1.2 Requirements Engineering Process 105

Requirements Elicitation and Gathering 107

6.2.1 Eliciting High-Level Requirements 108

6.2.2 Eliciting Detailed Requirements 110

Requirements Analysis 112

6.3.1 Requirements Analysis and Clustering by Business
Flow 112

6.3.2 Requirements Analysis and Clustering with Object-
Oriented Use Cases 114

6.4
6.5

6.6
6.7
6.8
6.9

Chapter 7
7.1
72

7.3

74
7.5
7.6
7.7
7.8

Chapter 8
8.1
8.2

Contents

6.3.3 Requirements Analysis and Clustering by Viewpoint-
Oriented Requirements Definition 116

6.3.4 Requirements Analysis and Prioritization 117

6.3.5 Requirements Traceability 120

Requirements Definition, Prototyping, and Reviews 120

Requirements Specification and Requirements
Agreement 124

Summary 125
Review Questions 126
Exercises 127
Suggested Readings 127

Design: Architecture and Methodology 129

Introduction to Design 130

Architectural Design 131

7.2.1 What Is Software Architecture? 131

7.2.2 Views and Viewpoints 131

7.23 Meta-Architectural Knowledge: Styles, Patterns,
Tactics, and Reference Architectures 133

Detailed Design 139

7.3.1 Functional Decomposition 139

7.3.2 Relational Database Design 141

7.3.3 Object-Oriented Design and UML 146

7.34 User-Interface Design 152

7.3.5 Some Further Design Concerns 157

HTML-Script-SQL Design Example 158

Summary 161

Review Questions 161

Exercises 162

Suggested Readings 162

Design Characteristics and Metrics 165
Characterizing Design 166

Some Legacy Characterizations of Design Attributes 166
8.2.1 Halstead Complexity Metric 166

8.22 McCabe’s Cyclomatic Complexity 168

xiii

xiv

Contents

8.3

8.4

8.5

8.6
8.7
8.8
8.9

Chapter 9
9.1
9.2
93
9.4
9.5
9.6
9.7
9.8
9.9

9.10
9.11
92.12

Chapter 10
10.1
10.2

10.3

8.2.3 Henry-Kafura Information Flow 169
8.24 AHigher-Level Complexity Measure 170
“Good” Design Attributes 171

8.3.1 Cohesion 171

83.2 Coupling 175

Object-Oriented Design Metrics 177

8.4.1 Aspect-Oriented Programming 179
8.4.2 The Law of Demeter 179
User-Interface Design 180

8.5.1 Good Ul Characteristics 180

8.5.2 Usability Evaluation and Testing 181
Summary 182

Review Questions 183

Exercises 184

Suggested Readings 184

Implementation 187

Introduction to Implementation 188
Characteristics of a Good Implementation 188
Programming Style and Coding Guidelines 189
Comments 191

Debugging 193

Assertions and Defensive Programming 194
Performance Optimization 195

Refactoring 196

Summary 197

Review Questions 197

Exercises 197

Suggested Readings 198

Testing and Quality Assurance 199

Introduction to Testing and Quality Assurance 200
Testing 202

10.2.1 The Purposes of Testing 202
Testing Techniques 203
10.3.1 Equivalence Class Partitioning 205

10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.71

Chapter 11
11.1
11.2

11.4
11.5
11.6
11.7
11.8
11.9
11.10

Chapter 12
12.1

Contents

10.3.2 Boundary Value Analysis 207

10.3.3 Path Analysis 208

10.3.4 Combinations of Conditions 213

10.3.5 Automated Unit Testing and Test-Driven
Development 213

10.3.6 An Example of Test-Driven Development 214

When to Stop Testing 218

Inspections and Reviews 220

Formal Methods 222

Static Analysis 223

Summary 224

Review Questions 224

Exercises 225

Suggested Readings 226

Configuration Management, Integration, and Builds 229

Software Configuration Management 230

Policy, Process, and Artifacts 230

11.2.1 Business Policy Impact on Configuration
Management 234

11.2.2 Process Influence on Configuration
Management 235

Configuration Management Framework 236

11.3.1 Naming Model 236

11.3.2 Storage and Access Model 238

Build and Integration and Build 240

Tools for Configuration Management 241

Managing the Configuration Management Framework 243

Summary 244

Review Questions 245

Exercises 245

Suggested Readings 246

Software Support and Maintenance 249
Customer Support 250
12.1.1 User Problem Arrival Rate 250

xXv

Contents

12.2
12.3
124
12.5
12.6
12.7

Chapter 13
13.1
13.2

133

134
13.5
13.6
13.7

Chapter 14
14.1
14.2
143

14.4

Appendix A

12.1.2 Customer Interface and Call Management 252
12.1.3 Technical Problem/Fix 254

12.1.4 Fix Delivery and Fix Installs 256

Product Maintenance Updates and Release Cycles 258
Change Control 259

Summary 261

Review Questions 261

Exercises 262

Suggested Readings 262

Software Project Management 265

The Necessity of Project Management 266

The Project Management Process 266

13.2.1 Planning 267

13.2.2 Organizing 270

13.2.3 Monitoring 271

13.24 Adjusting 273

Some Project Management Techniques 275

13.3.1 Project Effort Estimation 275

13.3.2 Work Breakdown Structure 283

13.3.3 Project Status Tracking with Earned Value 286
13.3.4 Measuring Project Properties and GQM 288
Summary 290

Review Questions 291

Exercises 291

Suggested Readings 293

Epilogue and Some Contemporary Issues 295
Security and Software Engineering 297
Reverse Engineering and Software Obfuscation 298

Software Validation and Verification Methodologies and
Tools 299

Suggested Readings 300

303
Essential Software Development Plan (SDP) 303

Contents

Appendix B 305
Essential Software Requirements Specifications (SRS) 305
Example 1: Essential SRS—Descriptive 305
Example 2: Essential SRS—Object Oriented 307
Example 3: Essential SRS—IEEE Standard 308
Example 4: Essential SRS—Narrative Approach 309

AppendixC 311
Essential Software Design 311
Example 1: Essential Software Design—UML 311

Example 2: Essential Software Design—
Structural 312

AppendixD 315
Essential Test Plan 315

Glossary 317
Index 321

