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Preface

Much fundamental research, technologies, and applications are now moving
toward achieving high-precision positioning and higher specifications in pro-
duction, thus achievable with the requirements of precision motion control
up to the order of the submicrometer or nanometer level. This is driven by
the emergence of current technologies, such as high-precision manufactur-
ing processes, machines, biotechnology, and nanotechnology. From the early
1980s, semiconductor and biomedical industries demanded high-precision
actuators to execute more precise positioning and manufacturing in their
processes, and the move toward ever-higher precision has continued to now.
Requirements pertaining to the precision of motion vary substantially. As
such, high-precision actuators are now in high demand, and are expected to
perform various types of movements, from rotation to translation, high torque
capability, wide speed range, etc. The application areas of high-precision ac-
tuators are diverse in aerospace, microelectronics, biomedical engineering,
and nanotechnology.

This book is a result of several years of work in the realization of precise
actuators. The primary intent of this book is to report new technologies in the
area of precision motion control, which can ultimately be applied in industry.
It covers dynamical analysis of precise actuators and strategies of design
for various control applications. The book consists of eight chapters treating
different topics. The content is suitable for graduate students and engineers
in precision engineering.

In what follows, the contents of the book are briefly reviewed.

Chapter 1 introduces the driving forces behind precise actuators, several
typical types of the actuators, as well as their applications. Chapter 2 de-
scribes nonlinear dynamics of precise actuators and their mathematical forms,
including hysteresis, creep, friction, and force ripples.

Chapter 3 presents control strategies for precise actuators based on the
Preisach model as well as creep dynamics. The identification algorithm is
first proposed to estimate Preisach model parameters, and then the inversion
feedforward controller is designed for hysteresis compensation. This strategy
is mainly for low frequency. For the case where precise actuators work at high
bandwidth relative to the resonant frequencies, another identification and
compensation strategy is designed. The proposed methods are illustrated by
experimental results.

Chapter 4 develops relay feedback techniques for identifying nonlinearities
such as friction and force ripples. By converting the closed-loop system into

xi



i Preface

a multiple-relay feedback system, switching conditions of a stable limit cycle
are obtained. Hence, friction and force ripples are identified by numerically
solving a set of equations. Simulation and real-time experiments show the
practical appeal of the proposed method.

Model predictive control (MPC) has become an attractive feedback strat-
egy, especially for linear systems. MPC solves an online optimization to deter-
mine inputs, taking into account the current conditions of the plant, any dis-
turbances affecting operation, and imposed safety and physical constraints.
Over the last several decades, MPC technology has reached a mature stage.
In Chapter 5, we present an MPC approach based on piecewise affine mod-
els that emulate the frictional effects in a precise actuator. Specially, an inte-
gral MPC design imposes robustness on a model-plant mismatch near zero
speed. Implementation of the real-time control is handled by a gain schedul-
ing table so that the complexity is comparable to the traditional feedforward
proportional-integral-derivative (PID).

Chapter 6 presents the concepts of air bearing stages with the correspond-
ing control method. A linear air bearing stage is first considered. Since it is a
floating object, eddy current braking is introduced into the system. A nonlin-
ear control with proportional-integral (PI) control is designed for dealing with
nonlinear terms. Subsequently, a multi-DOF (degrees of freedom) spherical
air bearing stage is presented. An adaptive noise filter and a controller for
angular positioning are proposed to achieve high performance. Finally, ex-
perimental results are given to show the effectiveness of the proposed control
algorithm.

Chapter 7 presents a set of schemes suitable for fault detection and ac-
commodation control of mechanical systems. The basic idea of designing a
fault detection scheme is to use the information provided by a model-based
nonlinear observer to find failure occurrences. The fault detection decision
is carried out by comparing the observer outputs with their signatures. Af-
ter a fault is detected, the controller is reconfigured by incorporating neural
networks that are used to capture the nonlinear characteristics of unknown
faults. The designed schemes can achieve the automated fault detection and
accommodation control using a dead-zone operator.

Chapter 8 is intended to provide readers with a bridge between the design
methods of the previous chapters and their applications. With this purpose
in mind, the chapter emphasizes the key issues involved and how to imple-
ment the precision motion control tasks in a practical system. These issues are
demonstrated by three case studies. The first case study describes a robust
adaptive control method for positioning piezoelectric actuators (ultrasonic
motor) to achieve highly precise motion. Real-time experimental results are
provided to verify the effectiveness of the proposed scheme when applied
to high-precision motion trajectory tracking, such as intracytoplasmic sperm
injection (ICSI). The second case study is focused on a motion control for a
two-dimensional stage that is used to treat a common disease called otitis
media with effusion (OME), involving a surgeon inserting a grommet in
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the eardrum to bypass the Eustachian tube to drain fluid when medication
tails. The third application is a vision-based real-time temperature monitoring
system, where an object recognition and tracking algorithm will be applied
to guide a temperature sensor to monitor the temperature of the working tool
while it is carrying out operations.

Tan Kok Kiong
Huang Sunan

MATLAB® is a registered trademark of The MathWorks, Inc. For product
information, please contact:

The MathWorks, Inc.
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Natick, MA 01760-2098 USA
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Introduction

Inawide range of industries, many applications require much higher precision
over a high bandwidth and speed than traditional actuators can deliver. This
increase in demand for higher-precision motion control has led to many new
innovations, including high-speed Maglev transportation systems, robotics
machines, micromanipulation systems, semiconductors, and the use of piezo-
electric materials to create motion. Precise actuators are the motion enablers
of the motion control system. They utilize a physical interaction to convert
an electrical energy into mechanical motion to achieve high speed and high
accuracy resolution. Developments of such precise actuators and their control
technologies will have an impact on a wide range of industries, from medi-
cal technology to precision tooling machines and 3D printing. The purpose of
this chapter is to discuss the drivers of precise actuators, main types of precise
actuators, challenges in their control, and precision applications.

1.1 Growing Interest in Precise Actuators

In recent years, electronic control and machine control have become more
efficient as new microprocessors, digital signal processors (DSPs), and other
electronics chips are providing the control platform with tremendous comput-
ing and processing power. Advances in actuators, such as direct drive motors,
piezo motors, coil motors, air bearing motors, linear motors, and brushless
motors are reducing traditional issues such as backlash, hysteresis, friction,
and parasitic system dynamics. The technical field of precision actuators has
expanded significantly over the past 30 years to include design method, error
compensation, control, actuator, sensor, fault failure, software platform, and
design methodology.

Frequently used actuators in the domain of precision and ultraprecision are
piezoelectric actuator (PA) and linear motors. For example, PAs have been ap-
plied to products such as a piezoelectric buzzer, a printer head, and ultrasonic
motors. In precision engineering applications, PAs have been increasingly
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employed, such as in modern micro- and nanofabrication, dynamic imaging
with scanning probe microscopes (SPMs), and advanced spacecrafts with
sensitive optical instruments. With the development of ultra-accurate appli-
cations, more stringent requirements are presented [1], which lay out the
scope of current techniques.

« High bandwidth: In SPMs, the PAs are required to track at very
high rates, which may exceed the resonant frequencies of PAs. Cur-
rently, most PAs operate at frequencies less than 10% of the resonant
frequencies.

« High accuracy: In addition to high-bandwidth requirements, high
accuracy is another requirement for PAs. Moreover, both high band-
width and high accuracy are current requirements in which the pre-
cision tracking is required at rates possibly beyond the resonant
frequencies.

» PFeedforward control: Feedback control is validated at normal
working frequency, but it is limited at frequencies higher than the
resonant frequencies due to the measurement noise at high frequen-
cies. The model-based inversion feedforward compensation, which
relies on the model identification, is a useful technology to increase
the tracking rates and enhance the trajectory tracking accuracy at
high frequencies, because the feedforward controller is effective for
avoiding the measurement noise that is more serious at high
frequencies.

The 2009 global market for piezoelectric-operated actuators and motors
was estimated to be 6.6 billion, and the market is estimated to reach 12.3
billion by 2014, showing an average annual growth rate of 13.2% per year [2].
Due to the demand from the consumer electronics market beyond com-
puters, hard disk drive (HDD) demand has been experiencing continual
growth over the past decade. It was reported in 2007 that 516.2 million hard
disk drives were sold [3]. Meanwhile, the linear motor is gaining attention
in precision manufacturing. The main driver of linear motor technology is
the ever-increasing performance demand in incremental positioning appli-
cations [4]. Unlike rotary machines, linear motors require no indirect cou-
pling mechanisms as in gear boxes, chains, and screws coupling. This greatly
reduces the effects of contact-type nonlinearities and disturbances, such as
backlash and frictional forces. In addition to precise actuator design, the
control of precision systems also has a wide range of applications in high-
speed and high-accuracy automation. The growth of nanotechnology and
nanoscale manufacturing has further raised the positioning requirements for
machine and controller design. The performance of such systems depends
on the application of advanced feedback control due to the large-scale sys-

tem of controlled variables and the uncertainties that might affect the system
significantly.
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1.2 Types of Precise Actuators

In this book, we will focus mainly on two common types of actuation tech-
nology used to achieve linear motion: piezoelectric actuator and linear motor.

1.2.1 Piezoelectric Actuator

The piezoelectric actuator (PA) has become an increasingly popular candidate
as a precise actuator in industry, due to its ability to achieve high precision and
its versatility to be implemented in various applications. More specifically, the
PA can provide very precise positioning (of the order of nanometer) and pro-
duce forces from low force (a few grams) to high force (up to a few thousand
Newtons). This is because PAs have the following appealing properties:

» High bandwidth (at rates of kHz)

« Small displacement (typically several microns)

» High accuracy (typically subnanometer accuracy)

« High force

» Friction-free (flexible joints are commonly used to avoid generating
the friction)

» Minimal static energy consumption

» Small size

The increasingly widespread industrial applications of the PA in various
optical fiber alignments, mask alignment, and medical micromanipulation
surgical robots are self-evident testimonies of the effectiveness of the PA in
these application domains. To obtain maximum performance from PAs, var-
ious types have been designed.

1.2.1.1 Stack Actuator

The most popular design for PAs is a stack of ceramic layers separated by thin
metallic electrodes, called stack actuator (see Figure 1.1). The stack actuator
changes its dimension or size when an electric field with a power supply is ap-
plied to it. Such change is very small and produces linear motion. This implies
that the stack actuator can achieve high-precision displacements (typically
20 nm). The actuator can also produce different forces according to supply
voltage. Commercial products for such stack actuators are available from
Physik Instrumente, Kinetic Ceramics, and NEC, which can provide precise
positioning in microns or at the nanometer level.

1.2.1.2 Piezoelectric Shear Actuator

Piezoelectric shear actuators are also very common, as shown in Figure 1.2.
Compared with linear PAs, shear actuators are adapted for small transverse
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FIGURE 1.1

Piezoelectric stack actuator.

displacements where space is a constraint. They offer very fast response times.
The main advantage of the shear actuators is their suitability for a bipolar
operational source, whereby the mid-position corresponds to a drive voltage
of 0 V. It should be noticed that in a shear actuator, the electric field is applied
perpendicular to the polarization direction, which is different from the other
types of actuators.

1.2.1.3 Piezoelectric Bending Actuator

In addition to the stack and shear actuators, piezoelectric bending actuators
(these actuators are often referred to as benders, piezoelectric cantilevers, or
piezoelectric bimorphs) are another important PA. The working principle is
that the application of an electric field across the two-layer element produces
curvature when one layer expands while the other layer contracts. Typical
movement for this kind of actuator is on the micrometer level (from hun-
dreds to thousands of microns), while the bender force generated is small
(from tens to hundreds of grams). Figures 1.3 and 1.4 show two common
bending configurations that are often used in various applications. The first
configuration, as shown in Figure 1.3, is called serial bender and has two
piezoelectric layers with two electrodes and an antiparallel polarization con-
nected to each other. The second configuration, as shown in Figure 1.4, is
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FIGURE 1.2
Piezoelectric shear actuator.



