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This text is designed for use in a one-semester or one-quarter physical
chemistry course at the junior level. In writing the second edition, I have
retained the original aim of placing the emphasis on understanding the physi-
cal concepts rather than on precise mathematical development or on actual
experimental detail. The principles of physical chemistry are presented from
~ the viewpoint of their applications to chemical and biochemical problems.
The text is also suitable for a full-year physical chemistry course where a
more rigorous text would be inappropriate.

Many topics from the first edition have been extensively rewritten and a
number of changes, corrections, and additions have been made. For example,
the chapter on thermodynamics has been expanded into three separate chap-
ters. In response to the request of many instructors, I have altered the se-
quence of the chapters so that thermodynamics and related material now
precede chemical bonding and spectroscopy. The number of end-of-chapter
problems has been more than doubled. These problems are divided into two
categories: those marked with a star are more challenging, while the un-
marked ones are relatively straightforward. In most chapters the references
have been expanded to include more up-to-date articles and texts. A new
feature in this edition is the appendices at the end of some chapters, which
provide mathematical derivations of equations and/or extensions of material
discussed in the chapters.

The case of SI units versus CGS units has not changed noticeably since the
first edition. For this reason, I have decided to continue with the practice of
presenting most physical quantities in both units. An important change is the
replacement of angstrom (A) with nanometer (nm) for wavelength.

I have greatly benefited from the suggestions and criticisms of many in-
structors who have used the text, as well as a number of reviewers and
colleagues. In particular I would like to thank the following individuals: Jesse
S. Binford, Jr. (University of South Florida), Robert E. Blankenship (Amherst
College), Donald Boerth (Southeastern Massachusetts University), Luther K.



Brice, Jr. (Virginia Polytechnic Institute and State University), B. J. Chapman
(University of Southampton, England), John N. Cooper (Bucknell Univer-
sity), Allen A. Denio (University of Delaware), George E. Ewing (Indiana
University), James Franzen (University of Pittsburgh), Chien Ho (Carnegie-
Mellon University), Gary W. Hunt (Shorter College), Richard S. Myers
(Delta State University), Gerald Nagahashi (Williams College), Richard F.
Olivo (Smith College), Reeves B. Perry (Southwest Texas State University),
Douglas D. Radtke (University of Wisconsin), John S. Ricci, Jr. (Williams
College), and Edmund C. Shearer (Fort Hays State University). Thanks are
also due Bolesh J. Skutnik (Fairfield University) and William J. Zaks (Wil-
liams College) for help in checking the accuracy of many problems.

Finally, I would like to express my appreciation to Gregory W. Payne, the
chemistry editor at Macmillan, for his assistance in general; to Elaine W.
Wetterau for editorial supervision; and to Eileen Sprague and Holly Andrews
for typing the manuscript.

I welcome comments and suggestions from readers.
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Nature of Physical
Chemistry

Physical chemistry can be described as a set of characteristically quantitative
approaches to the study of various chemical problems. A physical chemist is a
person who seeks to predict chemical events using certain models and postu-
lates. Because the problems encountered are often both diversified and
complex, a number of different approaches must be employed. For example,
in the study of thermodynamics and rates of chemical reactions, we employ
the phenomenological, macroscopic approach. On the other hand, a micro-
scopic, molecular approach is required for an understanding of the kinetic
behavior of molecules and reaction mechanism. Ideally, it would be best to
study all the phenomena at the molecular level, because it is here that one
learns what really occurs. Now, however, this is not possible—our knowledge
of atoms and molecules is neither extensive enough nor thorough enough.
Fortunately, there are some areas in which we are beginning to have good,
semiquantitative understanding. As each topic is developed, it is well to keep
in mind the scope and limitation of the approaches involved.

To see how physiochemical principles can be applied to study a biochemi-
cal system, let us consider the binding of oxygen with hemoglobin. This is one
of the most important biochemical reactions and may be the most extensively
studied. Hemoglobin is a protein molecule that has a molecular mass of about
65,000. The molecule contains four subunits, made up of two a chains (141
amino acids each) and two B chains (146 amino acids each). Each of the
chains contains a heme group to which an oxygen molecule can be bound.
The main function of hemoglobin is to carry oxygen in the blood from the
lungs to the tissues, where it unloads the oxygen molecules to myoglobin.

* “Hardp Ain’t It Hard.” Words and Music by Woody Guthrie. TRO—© Copyright 1952
Ludlow Music, Inc., New York, N.Y. Used by permission.
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Chap. 1

Introduction

Myoglobin, which possesses only one polypeptide chain (153 amino acids)
and one heme group, stores oxygen for metabolic processes.

The hemoglobin system has many interesting aspects. To begin with, we are
interested in the size, shape, and detailed structure of the molecule. A number
of techniques that have been developed in recent years, such as viscosity
measurement, electrophoresis, ultracentrifugation, and light scattering, enable
us to measure the molecular mass and/or to estimate the shape of macro-
molecules. The best technique for determining structure is X-ray diffraction,
but this can be quite difficult. Nevertheless, the complete or almost complete
structure of a number of protein molecules has been determined by the X-ray
method. Two such molecules are myoglobin and hemoglobin. A detailed
understanding of the three-dimensional structure of a protein molecule is
perhaps the single most important factor in revealing the secrets of its various
functions.

The next questions concern the binding of oxygen. To understand how
oxygen and other molecules, such as carbon monoxide and nitric oxide, bind
to the heme group, we need to investigate the coordination chemistry of
transition-metal ions in general and complexes of iron in particular. For
example, it is important to know which orbitals are involved in the complex,
as well as the reasons why the binding constant for CC is some 200 to 300
times stronger than that for oxygen. Knowledge of the molecular orbitals
involved will also help to explain the spectral properties.

A very important phenomenon is the cooperative nature of binding. It was
noticed many years ago that oxygen molecules did not bind to the four heme
groups independently; rather, the presence of the first molecule facilitates the
binding of the second, and so on. The biological function of cooperative
binding is that it results in the more efficient transport and release of oxygen.
The kinetic and thermodynamic details of this phenomenon have been suc-
cessfully accounted for, at least in broad outline, by current theories based on
the allosteric model, which is also applicable to many other regulatory
enzymes.

Another function of hemoglobin is the transportation of carbon dioxide
from the tissues to the lungs. The pH dependence of the oxygen equilibrium,
the Bohr effect, is coupled to this role. The maintenance of proper physiologi-
cal pH is of paramount importance, because the function and efficiency of
most proteins and enzymes depend critically on the hydrogen-ion concentra-
tion. The CO,-O, transport process in blood is buffered by the bicarbonate-
carbonic acid system. Being amphoteric,* hemoglobin itself can also act as a
buffer. Here the problem is dealt with in terms of acid-base equilibria.

Finally, we may raise the following point: Of the very large number of
possible structures that a molecule this size can assume, why is it that only
one predominant structure is observed for hemoglobin? We must realize that
in addition to the normal chemical bonds, many other types of molecular
interaction, such as electrostatic forces, hydrogen bonding, and van der Waals
forces, are also present. In principle, a macromolecule can fold up in many
different ways; the native conformation represents the minimume-energy struc-
ture or is in the neighborhood of the minimum-energy structure. The
specificity in binding depends precisely on the environment at and near the
active site which is maintained by the rest of the three-dimensional molecule.

* An amphoteric substance can react either as an acid or as a base, depending onereaction
conditions.



To appreciate how delicate the balance of these forces must be in some cases,
consider the replacement of a glutamic acid by valine in the # chains:

NH, H.C NH,
HOOC—(CH,), —é—coon C/CH —J: —COOH
H,

glutamic acid valine

This seemingly small alternation is sufficient to result in a significant confor-
mational change—an increase in the attraction between protein molecules,
resulting in polymerization. Insoluble polymers so formed will then distort
red blood cells into a sickle shape, causing the disease that we call sickle-cell
anemia.

All these problems can be understood, at least in theory, by application of
the principles of physical chemistry. Obviously, very different approaches are
needed if a thorough investigation of the chemistry of hemoglobin is desired.
We could easily have chosen another example, such as photosynthesis, to
demonstrate our point. It is not the purpose of this text to present a detailed
explanation for each of the phenomena described above; however, the hemo-
globin example serves to illustrate that a student must first understand the
basic principles of physical chemistry before embarking on the study of many
exciting biochemical phenomena.

Units

Students are frequently confused by the variety of units used in physical
chemistry. Since people in vastly different disciplines have contributed to the
development of this science, it is not surprising that different units are often
used to express the same quantity. A case in point relates to the quantity of
heat, which can be expressed in terms of calories, joules, or British thermal
units (Btu). To add to the confusion, the calorie unit used to measure the fuel
value of food is 1000 times greater than that for measuring bond energies and
heats of chemical reactions.

The CGS (centimeter-gram-second) system, which was developed in
France after the French Revolution, has been widely adopted throughout the
world, with the notable exception of the United States. The advantage of
metric units lies in their convenience and simplicity, in contrast to such
native units as the foot and the pound. Physicists, on the other hand, have
long favored the MKS (meter-kilogram-second) system.

In 1960, the General Conference of Weights and Measures, an international
authority on units, agreed to adopt the International System of Units (SI).
This system has now been endorsed by scientists in many countries. The
advantage of the SI system is that many of the units employed are derivable
from natural constants. For example, the CGS unit of length is the meter
(strictly the centimeter; 1 meter is exactly equal to 100 cm), which is defined
to be the distance between two marked lines on a bar kept in Sévres, near
Paris. On the other hand, the SI system defines meter as the length equal to
1,650,763.73 wavelengths of radiation corresponding to a particular electronic
transition from the 6d to the 5p orbital in krypton. The unit of time, second, is
defined as 9,192,631,770 cycles of the radiation associated with a certain elec-
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