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Preface

This book is the result of many years of joint work and fun with equilibrium finite
element formulations. Although they are often regarded as the ugly duckling of
computational mechanics, we know that they have characteristics that are particularly
attractive. It thus became our mission to spread the word that a ‘strongly equilibrated
finite element’ is not a contradiction.

It all started a long time ago, in the late 1960s, when Edward, then a PhD student
in civil engineering at Imperial College, attended a lecture by Fraeijs de Veubeke.! In
retrospect he now has some questions that might have been interesting at the time,
but he also admits that the recognition of the practical relevance of the equilibrium
formulations for continua that were presented only really came later, while doing
structural design of reinforced concrete using stress fields obtained from displacement
based finite elements.

Edward was also fortunate to have John Henderson as supervisor and later as a friend,
colleague and father figure. John was a polymath with a firm belief in the benefits
of a proper mathematical foundation to structural analysis, from vector spaces to
algebraic topology. He encouraged the transfer of knowledge gained from the analysis
of aircraft structures to the analysis of civil engineering structures, using concepts of
static-kinematic duality in the pursuit of equilibrium via flexibility methods.

Zé Paulo’s discovery of how to impose strong forms equilibrium, and as consequence
the discovery of Fraeijs de Veubeke’s and John Henderson’s work, happened in 1985,
also at Imperial College. His objective was to figure out the characteristics of the
solutions of simple elastoplastic models which could enforce either equilibrium or
compatibility, leading to interesting complementarities in the results.

Bruce Iron's book Techniques of Finite Elements, published in 1980, with its clear,
imaginative and friendly style, focused on ‘enabling the understanding of mathematical
and physical concepts, because effective trouble-shooting is best achieved with such
harmony’, also had a very strong influence on both authors.

The stars were thus aligned for equilibrium when we first met in the office of David
Lloyd Smith at Imperial College, sometime in 1992.> After many papers, projects
and conferences, where stress fields and spurious kinematic modes were dissected to
exhaustion, we decided to collect our ideas in a book.

1 Probably in the Department of Aeronautics, where he also attended memorable lectures given by Kelsey,
of Argyris and Kelsey fame!

2 Following the publication of ‘An alternative approach to the formulation of hybrid equilibrium finite
elements’.
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Preface

The resulting text provides a comprehensive presentation of an equilibrium
formulation of the finite element method, principally with application to 2D, 3D and
plate flexure problems in structural mechanics, when strains can be assumed to be
infinitesimally small. Equal weight is given to the construction of stress fields that
strongly satisfy equilibrium within and between elements, as well as displacements on
element boundaries that are ‘broken’ or discontinuous at vertices of 2D plate elements
or edges of solid elements.

We present up-to-date developments which enable dual analyses of models to be
undertaken, either as a means of verification or as an alternative source of output that
may be more directly useful to design engineers.

The book starts with a simple introduction of the concepts involved, followed by a
historical introduction of equilibrium in the context of finite element analysis, and com-
parison with other formulations. We discuss the details of the equilibrium formulation
in the context of modelling linear elastic static and dynamic behaviour with particular
emphasis on the associated problems of spurious kinematic modes. A more mathemati-
cal justification of the formulation is included, where we propose a relevant functional to
be used in the variational analysis of the saddle point problem, and attempt to explain its
significance in engineering terms to a non-mathematician. We then proceed to present
methods to recover complementary conforming and equilibrating solutions from each
other, and show how the dual nature of such solutions enables bounds to be enumer-
ated on global or local quantities of interest. The text concludes by opening routes to
extending the formulation in order to simulate various forms of non-linear behaviour.

We make particular effort to explain the more mathematical concepts in straightfor-
ward terms which we hope will be understandable by the intended readership, namely
senior undergraduates of engineering and applied mathematics, graduate researchers
and practising engineers with an interest in verification, duality and safe structural
design.

The topics are illustrated with a range of numerical examples which have been
carefully designed to be simple, but of just sufficient complexity to highlight particular
features.

The book contains two appendices: the first to summarize the fundamental equations
of structural mechanics, and the second to serve as a companion to the computer
programs that were developed in the course of writing the book. These programs are
available on request to the first author and we intend to publish them, when they are
more mature, under an open source licence.

The time from initial thoughts, in 2009, to the formal proposal, submitted in April
2011 and accepted in March 2012, was almost as long as that to complete the text. As
usual, longer than we had anticipated.

We thank, first and foremost, our families for their patience and moral support. Our
gratitude also extends to all the colleagues and friends who, directly or indirectly, and
in many different ways, have helped us in developing our ideas before or during the
writing of this book: in particular to Orlando Pereira and Pierre Beckers who read
the manuscript, as well as to Angus Ramsay, Antonio Huerta, Bassam Izzuddin, Bill
Harvey, Carlos Tiago, David Lloyd Smith, Eduardo Arantes e Oliveira, Jodo Teixeira
de Freitas, John Robinson, Luiz Fernando Martha, Pedro Diez, Philippe Bouillard and
Pierre Ladeveze.
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We do not forget to thank all the people in the editorial and production teams at Wiley,
for their patience and advice throughout the preparation of this book. A special mention
should be made regarding the helpful suggestions by the copy editor, Chris Cartwright.

Our recognition obviously includes all those who we have forgotten — sorry for that.

We hope you enjoy this book as much as we enjoyed writing it.

Lisbon and Exeter, March 2016
7¢ Paulo and Edward



List of Symbols

The general meaning of the most commonly used symbols is given in this list. Other
meanings may be specified in the text.
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Equilibrium/compatibility matrix for the hybrid formulations
Degree of a given polynomial approximation

Rigid body displacement

Young’s modulus

(Generalized) strain vector or component

Bound of the error of a pair of solutions

Element flexibility matrix

Material flexibility matrix

Boundary of the problem

Shear strain vector or component

Element stiffness matrix

Material stiffness matrix
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Area coordinate on a face

Lagrange multiplier function

Length of a side
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Poisson’s ratio
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Q Domain of the problem

1) Eigenfrequency

Internal angle at a vertex of a triangle or dihedral angle at an edge of a
tetrahedron

cot g

Total potential energy

Total complementary energy

Generalized complementary energy
Partition of unity function

w ory* Interpolation matrix or function

gqorg, Distributed shear force vector or component
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S0 a3as

p Mass density

S Stress approximation matrix

coro,; (Generalized) stress vector or component

8 Stress approximation parameters

S Set (including vector space) of statically admissible stress fields
T Kinetic energy density

tort, (Generalized) boundary traction vector or component
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T Set (including vector space) of side tractions

u Strain energy

u, Complementary strain energy
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U, Set (including vector space) of kinematically admissible displacement fields

v Boundary displacement
|4 Boundary displacement approximation matrix
v Boundary displacement approximation parameters
1% Set (including vector space) of boundary displacements
Vv Work done by the applied forces
V. Work done by the imposed displacements
w Strain energy density

W, Complementary strain energy density

w Transverse displacement of a plate

& Coordinate on the boundary of an element

O, org,, Vector associated with element e or boundary entity m

0, oro, Component of vector associated with element e or boundary entity m
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Introduction

1.1 Prerequisites

A very concise description of this book is that it

presents a methodology to predict and explain the distribution of forces and deflections
that develop within a loaded structure.

For a layman who is unfamiliar with structural analysis, this description requires fur-
ther explanations of many important points, namely: What is a structure? What are the
forces within the structure? What are loads? Why and how do they get distributed?

We will not try to address these questions. For their answers a basic book on
structural analysis, for example, Coates et al. (1988); Hibbeler (2008) or Marti (2013)
will provide the necessary knowledge on the concepts used to describe structural
behaviour — equilibrium, compatibility and constitutive relations —as well as the
variables involved — forces, displacements, stresses and strains.

For all but the simplest problems, the mathematical equations used to describe the
relations between these structural variables cannot be solved in a closed form. Of the
various techniques that are used to obtain approximate solutions of these equations
we will focus our attention on the application of a particular technique, the finite ele-
ment method (FEM). Though it is possible to gain an understanding of FEM concepts
solely from the information that will be presented in this text, it is more convenient to
start with a basic book on finite element procedures, for example, Fish and Belytschko
(2007).

We will therefore assume that the reader has a basic knowledge of the problems of
structural analysis, namely of the fundamental equations of solid mechanics and, at least,
some understanding of the procedures involved in the application of the FEM, most
probably using a conventional displacement based formulation.

Such a reader, probably with an engineering background in the context of aeronautical,
civil or mechanical engineering applications, given a title which includes ‘equilibrium’

Equilibrium Finite Element Formulations, First Edition. J. P. Moitinho de Almeida and Edward A. W. Maunder.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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and ‘finite elements’ might rather wonder: ‘Why another book? The finite element method
is well known and it provides solutions that satisfy equilibrium. Doesn’t it? The fact is
that in most cases it doesn'’t, since only an approximate form of equilibrium is achieved
by displacement based finite element formulations.

Our text presents a way to obtain solutions that are different from the ‘usual’ ones,
because they exactly satisfy equilibrium. Nevertheless, since they normally omit the
strict enforcement of compatibility conditions, it is not possible to say a priori which
will be better. They just fail in different ways.

We believe that exploiting the complementarity of the two approaches allows for an
interpretation of the results that is more profound than what is possible with a single
type of analysis, naturally providing the tools for the assessment of their quality.

That, in the end, is our goal. Explaining in detail how equilibrated solutions can be
obtained is just a step towards it.

1.2 What Is Meant by Equilibrium? Weak to Strong Forms

We expect the reader to understand what is meant by a free body, and being in a state
of equilibrium, that is, the forces and their moments sum to zero. However, although
checks on equilibrium at the global or overall level of a structure, for example, as rep-
resented by its finite element model, are commonly undertaken, deeper investigations
into local levels of equilibrium become more problematic.

In FEM there are various shades of meaning, and perhaps expectation, when consid-
ering local equilibrium. The concept of a free body normally starts at the level of an
infinitesimal element in a continuum (i.e. strong equilibrium between body forces and
stresses), which is itself a mathematical abstraction — since we ignore the microscopic
structure of the material.

Then the concept moves to the level of a single finite element, and then it may move
back to another mathematical abstraction — a node of an element, where we invoke the
concept of nodal forces (i.e. corresponding to a weak form of equilibrium between stat-
ically equivalent forces).

It is relevant here to note that the concept of a nodal force may not be explicitly men-
tioned in texts on finite elements, and we are aware of commercially available software
where nodal forces are not available to the user, but only stress contours and tables of
stresses at particular points!

In practice some confusion exists, and engineers may be unaware of the ‘subtle’ dis-
tinctions between these different levels of equilibrium of free bodies, and their signif-
icance to the analysis of a finite element model. We frequently hear of engineers who
look blank when advised that local equilibrium is usually violated — they appear to have
a firm conviction that equilibrium is being satisfied in all necessary aspects. Their first
response might be: ‘Does it matter if there are local violations?

An appropriate reply might be: ‘It all depends on your needs and how well you know
the distribution of the loads.” This is a matter of judgement, but we would advise that
engineers, when faced with many uncertainties, can proceed with more confidence
knowing that their analysis provides complete equilibrium. Local violations can be
regarded as residual loads that are equilibrated by the errors in stress, and such loads
are made orthogonal to the displacements allowed by a conforming model. By refining
the model, the solutions converge, even when residual loads persist.



Introduction

Our starting point is the fact that conventional finite element analyses ‘provide solu-
tions that equilibrate the equivalent nodal forces’, where the adjective equivalent
plays a central role that is often disregarded in the more basic introductions to the FE
method.

Effectively there is equilibrium of equivalent nodal forces in the solutions provided by
most FE programs. We will discuss in detail what that means and we will conclude that,
in most cases, there are no nodal forces as such. Energetically consistent nodal forces
are defined, which are required to produce the same work as the real forces and stresses
for all displacements considered. But, in general, this is not sufficient to guarantee equi-
librium in a strong, or pointwise, sense.

This happens because only a finite subset of the possible displacements can be
included in a given model and the solution space is generally infinite, therefore
equilibrium is imposed on an average, or weak form. Generally

the solutions provided by displacement based FE models do not enforce the equilibrium
conditions at every point of the domain and/or its boundary.

Our objective is to present in this book a methodology whose models produce solu-
tions that strongly verify all equilibrium conditions. As always there is a drawback for
every new approach. In this case the gain in terms of equilibrium will imply a loss in
terms of compatibility, which will only be imposed in a weak form.

We will not pretend that these equilibrium formulations are always better than their
displacement based counterparts, as each formulation locally enforces one set of condi-
tions, while imposing a weak form of the other.

1.3 What Do We Gain From Strong Forms of Equilibrium?

The complementary nature of these formulations is, in our opinion, the strongest rea-
son for considering solutions obtained from both approaches. It does not matter which
one is considered first, as the different approximate solutions that they produce are com-
plementary, in the sense that they satisfy complementary equations in a strong and in a
weak form.

As we will show, this complementarity can be used in a natural way to assess the
quality of the solutions, and to drive a mesh adaptation process, deciding where it
is important to have more, or fewer elements. From a practical point of view it is
also relevant to point out that equilibrium solutions have the advantage of being
immediately usable as a safe basis for design of ductile structures, when the Static
Theorem of Limit Analysis can be invoked (fib, 2013; Marti, 2013; Nielsen and Hoang,
2010).

In particular, equilibrium solutions give us a more rational way of accounting for
stress concentrations, especially when they arise due to mathematical singularities
where the structural geometry has been simplified, for example, at re-entrant corners.
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