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Preface

Micromechanics is a branch of applied mechanics that began with the celebrated paper of
Eshelby published in 1957. It refers to analytical methods for solid mechanics that can describe
deformations as functions of such microstructures as voids, cracks, inclusions, and dislo-
cations. Micromechanics is an essential tool for obtaining mechanical fields analytically in
modern materials including composite and nanomaterials that did not exist 50 years ago.

There exist a number of well-written books with a similar subject title to this book (microme-
chanics, continuum mechanics with computer algebra, etc.). However, many of them are
written by mathematicians or theoretical physicists that follow the strict style of rigorous
formality (theorem, corollary, etc.), which may easily discourage aspiring students without
formal background in mathematics and physics yet who want to learn what micromechanics
has to offer.

The threshold of micromechanics seems high because many formulas and derivations are
based on tensor algebra and analysis that calls for a substantial amount of algebra. Although
it is a routine type of work, evaluation of tensorial equations requires tedious manual calcula-
tions. This scheme all changed in the 1980s with the emergence of computer algebra systems
that made it possible to crunch symbols instead of numbers. It is no longer necessary to spend
endless time on algebra manually as symbolically capable software such as Maple and Math-
ematica can handle complex tensor equations

The aim of this book is to introduce the concept of micromechanics in plain terms with-
out rigorousness yet still maintaining consistency with a target audience of those who want
to actually use the result of micromechanics for multiphase/heterogeneous materials, taking
advantage of a computer algebra system, Mathematica, rather than those who need formal
and rigorous derivations of the equations in micromechanics. The author has been a fan of
Mathematica since the 1990s and believes that it is the best tool for handling subjects in
micromechanics that require both analytical and numerical computations. Unlike numerically
oriented computer languages such as C and Fortran, Mathematica can process both symbols
and numerics seamlessly, thus being capable of handling lengthy tensorial manipulations that
can release mundane and tedious jobs by human beings. There have been intense debates in
user communities about the difference and preference among Mathematica and other numer-
ical software such as MATLAB. all of which are widely used in engineering and scientific
communities. The major difference is that software such as MATLAB offers only a limited
support for symbolic variables through licensing Maple and is not integrated in the system
seamlessly, whereas in Mathematica. there is no distinction between symbolic and numerical
variables: more importantly, it is not possible to derive and manipulate formulas employed in
this book with MATLAB alone.



Preface

One of the unique features in this book is to introduce many examples in micromechanics
that can be solved only through computer algebra systems. This includes stress analysis for
multiinclusions and the use of the Airy stress function for inclusion problems.

Many of the subjects presented in this book may be classical that may have existed for
the past 200 years. Nevertheless, those problems presented in this book would not have been
possibly solved analytically had it not been for Mathematica or, for that matter, any computer
algebra system, which, the author believes, is the raison d'étre of this book.

This book consists of four chapters that cover a variety of topics in micromechanics. Each
example problem is accompanied with corresponding Mathematica code. Chapter | introduces
the basic concept of the coordinate transformations and the properties of Cartesian tensors that
are needed to derive equations in continuum mechanics. In Chapter 2, based on the concepts
introduced in Chapter 1, the field equations in continuum mechanics are derived. Coordinate
transformations in general curvilinear coordinate systems are discussed. Chapter 3 presents a
new paradigm for inclusion problems embedded in an infinite matrix. After a brief introduction
of the Eshelby method, new analytical approaches to derive the stress fields for an inclusion
and concentrically placed inclusions in an infinite matrix are discussed along with their imple-
mentations in Mathematica. Chapter 4 is devoted to the inclusion problems where the matrix is
finite-sized. The classical Galerkin method is combined with Mathematica to derive the phys-
ical and mechanical fields semi-analytically. The Appendix is an introduction to Mathematica
that provides sufficient background information in order to understand the Mathematica code
presented in this book.

Seiichi Nomura
Arlington, Texas
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1

Coordinate Transformation
and Tensors

To describe the state of the deformation for a deformable body, the coordinate transformation
plays an important rule, and the most appropriate way to represent the coordinate transfor-
mation is to use tensors. In this chapter, the concept of coordinate transformations and the
introduction to tensor algebra in the Cartesian coordinate system are presented along with
their implementation in Mathematica. As this book is not meant to be a textbook on contin-
uum mechanics, the readers are referred to some good reference books including Romano
et al. (2006) and Fung (1965), among others. Manipulation involving indices requires a con-
siderable amount of algebra work when the expressions become lengthy and complicated. It
is not practical to properly handle and evaluate quantities that involve tensor manipulations by
conventional scientific/engineering software such as FORTRAN, C, and MATLAB. Software
packages capable of handling symbolic manipulations include Mathematica (Wolfram 1999),
Maple (Garvan 2001). and others. In this book, Mathematica is exclusively used for imple-
mentation and evaluation of derived formulas. A brief introduction to the basic commands in
Mathematica is found in the appendix, which should be appropriate to understand and execute
the Mathematica code used in this book.

1.1 Index Notation

If one wants to properly express the deformation state of deformable bodies regardless of
whether they are solids or fluids, the use of tensor equations is essential. There are several
different ways to denote notations of tensors, one of which uses indices and others without
using indices at all. In this book, the index notation is exclusively used throughout to avert
unnecessary abstraction at the expense of mathematical sophistication.

The following are the main compelling reasons to mandate the use of tensor notations in
order to describe the deformation state of bodies correctly.

Micromechanics with Mathematica, First Edition. Seiichi Nomura.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/nomura0615



2 Micromechanics with Mathematica

I. The principle of physics stipulates that a physically meaningful object must be described
independent of the frame of references.' If the equation for a physically meaningful object
changes depending on the coordinate system used, that equation is no longer a correct
equation.

2. Tensor equations can be shown to be invariant under the coordinate transformation. Ten-
sor equations are thus defined as those equations that are unchanged from one coordinate

system to another.

Hence, by combining the two aforementioned statements, it can be concluded that only
tensor equations can describe the physical objects properly. In other words, if an equation is
not in tensorial format, the equation does not represent the object physically.

The index notation, also known as the Einstein notation (Einstein et al. 1916)? or the sum-
mation convention, is the most widely used notation to represent tensor quantities, which will
be used in this book. The index notation in the Cartesian coordinate system is summarized as
follows:

I. For mathematical symbols that are referred to quantities in the x, y, and z directions, use
subscripts, 1, 2, 3, as in x|,x,,X3 Or ¢, a,, as, instead of x, v,z or a, b, c. The subscripted
numbers 1. 2, and 3. refer to the x, y, and z directions, respectively. Obviously. the upper
limit of the number is 2 for 2-D and 3 for 3-D.

If there are twice repeated indices in a term of products such as a;b;, the summation with
respect to that index (i) is always assumed. For example,

2

3

ab; = Z a;b; = a\b, + a,b, + azby; (3-D).
i=1
There is no exception to this rule. An expression such as a;b;c; is not allowed as the number
of repetitions is 3 instead of 2.

A repeated index is called the dummy index as it does not matter what letter is used, and an
unrepeated index is called the free index.® For example,

XX = XpX; = XpXgs

all of which represent a summation (= ) .x;x;). An unrepeated index such as x; (or X; Or X,)
stands for one of x|, x,, or x3.

It should be noted that the notations and conventions introduced are valid for the Cartesian
coordinate system only. In a curvilinear coordinate system such as the spherical coordinate sys-
tem, the length of base vectors is not necessarily unity, and this mandates the aforementioned
index notation to be modified to reflect the difference between the contravariant components
and the covariant components, which will be discussed in Chapter 2.

!'"This “frame of references™ refers to the Galilean transformation in classical mechanics. the Lorentz transformation
in special relativity, and the general curvilinear transformation in general relativity.

% Albert Einstein introduced this notation in 1916.

This is similar to definite integrals. The variable used in a definite integral does not matter as

b b b
Jx)dx =/ Jdy= [ f(2)dz

a a

The variables x, v, and z are called dummy variables.



Coordinate Transformation and Tensors

1.1.1 Some Examples of Index Notation in 3-D
1. xpx;

As the index i is repeated, the summation symbol, Y, must be added in front, i.e.,

X X;

X
1
M-

T

XX 4 XX, + X3,

Il

e ] 2
+y 4+

Note that x,x; is different from (x;)>. While x,x; represents a single expression with three
. . 2.
terms, (x,-)2 represents one of the three expressions ((x, )2, (.\‘2)2, or (x3)°).

2. xpxx;
j . . - . . ~ .
Note that the index i is a dummy index (repeated twice) while the index j is a free index
(no repeat). Therefore,
3
XXX = X; Z XX
i=1
= x,((x)* + (1) + (x3)%)
X2 + 32 4+ 22)
or
=2 y(2 + 32 +2%)
or
22 +y? +22).
3. xxxg

This is not a valid tensor expression as the number of repeated indices must be 2.

1.1.2  Mathematica Implementation

As Mathematica itself does not support tensor manipulation natively, it is necessary to devise
a way to handle index notation and tensor manipulation. In this book, a list or a list of lists
(a nested list) is used to represent tensor quantities. Using a nested list to define a tensor of
any rank is straightforward but at the same time limited to the Cartesian tensors. For tensors
defined in a curvilinear coordinate system, a slightly different approach is needed.

When running Mathematica first time, a default directory should be selected so that all the
notebook files can be saved and accessed in this directory. By default, Mathematica looks
for all the files stored in c:\users\<user>\ where <user> is the user’s home directory.*
The SetDirectory command can change this location. For example, if you want to change
the default directory to c:\tmp, the SetDirectory command can specify the default
directory as

*The Windows operating system uses “\" (backslash) as the directory delimiter while the Unix system uses /"
(forward slash) as the directory delimiter. However, the */” in the SetDirectory command in Mathematica works
for both.
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n[1}= SetDirectory["c:/tmp"]
ouf1l= c:\tmp

It is noted that the directory delimiter needs to be entered as */” (forward slash) even though

the Windows delimiter character is “\” (backslash).
To enter a three-dimensional vector, v = (x”,y%,2%), the following Mathematica command

can be entered to create a list with braces (curly brackets) as
2= v ={x"2, y*2, z"2}
ou= {x*, y*, 2° }
An individual component of v can be referenced using double square brackets ([ [...]]) as
niEk= v[[1]]
outsE %2
The partial derivative of v with respect to x can be entered as
Inf4]= D[wv, x]
outd)= {2x, 0, 0}
You can also differentiate an individual component as
msi= DIv[[2]], ¥y]
ousl= 2y

Implementation of the coordinate component, x;, into Mathematica can be done by using
the Table function. To define a position vector, r, whose components are (x,, x,.X3), enter

nfil= r = Table[x[i], {i, 1, 3}]
ouft= {x[1], x[2], x[3]}

The given Table function generates a list of elements. For example, the following command
generates a sequence of i~ fori =1, ..., 10.

2= Table[ i%2, {i, 1, 10}]

owp {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

In the definition of the position vector, r, it is noted that the coordinate components, (x,, x5, x3),
are entered as x [1], x[2], x[3] instead of x[[1]1], x[[2]], x[[31].Itis important
to distinguish a single square bracket ( [...]) and a double square bracket ( [ [...]1). The single
square bracket ([...]) is for a parameter used in a function. The quantity, x [1], stands for a
function, x, with the argument of 1. By using a single square bracket, the quantities such as
x [1].x[2] can stand for themselves, meaning that initial values do not have to be preassigned.
On the other hand. if x [ [1]] were used instead of x[1], 0 would be returned unless a list x
is previously defined.
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To define a function in Mathematica, use the following syntax:

= £[x ] :=x"2+1

inf21= £[6]
outlel= 37
nEl= £[a”2]

ous= 1 +a*

In the aforementioned example code, a user-defined function, £ [x], that returns x> + 1 is
defined. The syntax is such that variables of the function must be presented to the left of the
equal sign with the underscore and the definition of the function is given to the right of a colon
and an equal sign (:=). It is important to note that a function in Mathematica returns itself if

no prior definition is given.
n= £[x_, y ] :=x"2+y"2
ne= £[a”3, b*2]

ouf2)= a® + b*

n@]:= £[1]
outdl= £[1]
Ind)= gla]
oudl= gla]

In the aforementioned example, £ [x, y] is defined as a function that takes two variables
returning x> + y2. However, when f is called with only one variable, 1, it returns itself, i.e.,
£[11, as £ with only one variable has not been defined. When g [a] is entered, it returns itself
without evaluation as there is no prior definition of g [x] given. It is this property of a function
in Mathematica that enables manipulating index notations.

As an example of using x [1] as the coordinate components, here is how to implement the
summation convention. As Mathematica does not have support for the summation convention
builtin, if x [1]x [1] meant as x,x; = x? +x§ + x% is entered as

inf1:= x[1] x[1]
outfl= x[1i]?

Mathematica does not automatically expand x,x; and reduce the result to »2. Hence, it is nec-
essary to explicitly use the Sum[] command as

Infgl= Sum[x[i] x[1], {i, 1, 3}]
ouels x[1]% +x[2]% +x[3]?

for x;x;.
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However, it is possible to implement the summation convention in Mathematica with the
following procedure.

In[1= Unprotect[Times];
x[i Symbol] x[i Symbol] :=r"2;

Protect[Times];

The aforementioned three-line code adds a new rule to automatically replace x [i]1x [i] by r?
through pattern matching. When Mathematica evaluates the product of two quantities, it calls
its internal function, Times, which tries to simplify the result with various pattern-matching
algorithms. It is not possible to modify the pattern-matching algorithms as they are part of
the definition of the Times function and they are protected by default. Therefore, it is nec-
essary to unprotect the multiplication operator, Times, in Mathematica with the Unprotect
command so that a new rule for the summation convention can be added. The second line is
to tell Mathematica a new rule that whenever a pattern of x[i]x[i] where 1 is any sym-
bol but not a number is entered, it is automatically replaced by 2. Finally, in the third line,
the Times function is given back the Protect attribute so that any further modification is
prevented. After these three lines are entered, the summation convention for x[1] x[i] is
automatic as

= x[3] x[]]
outia)e r2

nsk= x[3] x[3]

ousi= x[3]2

in6l= x[j] x[3] x[i]
outlsl= r? x[1]

7= x[1] x[1] x[3]1 x[3]

ou7i= r?

In the aforementioned examples, x;x; is reduced to r? but x;x; remains unchanged. The expres-
sion, x;x;x; is simplified to r’x; and x;x;x;x; is reduced to r*. With this pattern-matching capabil-
ity of Mathematica, manipulation of tensor quantities can be greatly simplified. More detailed

examples will be shown later.

1.1.3 Kronecker Delta

One of the most important symbols in tensor algebra is the Kronecker delta, which is defined as

5 = 1, if(i,)) =(1,1),(2,2),0r (3,3)
77010, otherwise.
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The Kronecker delta is what is equivalent to 1 in numbers or the identity matrix in linear
algebra. It is also used to define the inverse of a tensor.

Examples
. &, (3-D) ‘
0 = Z Gji
=1
= 6 +b'72 +6;;
=13
2. 6,6, (3-D)
103
8oy = 2, D 6
=1 j=1
=06116)) + 0120, + 0303
+ 65105) + 627075 + 653023
+ 03103; + 63,03, + 633633
=3
3. 6;6; (3-D)
3 3
9= 20 2%
= (81 + 83 + 633)(6)| + 635 + 633)
=0,
4. o XiXj (3-D)
3
B;XX; Z P

i=| j=I
= 011X X + 015X X5 + 83X X3
+ 051 XX + 83X X5 + Fr3X5X3
+ 8303X) + 83003X + B33x3X5
= ()% + (5% + ()2
The Kronecker delta can be implemented in Mathematica by several different ways. The fol-

lowing implementation is to use a function to define the Kronecker delta, which is valid for
any number of dimensions.
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inft= delta[i Integer, j_Integer] := If[i =3, 1, 0]
mer= delta[l, 2]

Outizl= 0

3= deltaf[i, j]

oug= deltafi, j]

n@4l= Sum[delta[i, 1], {i, 3}]

Outdl= 3

The underline *_" after the variable name is used by Mathematica to restrict the type of variable
to be the type that follows _. In this case, delta[i, j] is evaluated only when both i and
j are integers. The function If [condition, t, £] gives t if condition is true and £
otherwise. Note that the two equal signs (==) in “i==3" mean equality, not an assignment as
in most of the programming languages.

1.1.3.1 Summation Convention for 6,-j

Some of the properties of the Kronecker delta that involve the summation convention include:

5,-" = 3. (lj()U = a, “:’jéik = (lkl‘. 5’16’/\ = 6jk’

The following Mathematica code implements the aforementioned rules so that summation
convention that involves the Kronecker delta is always antomatically executed.

In[10]= SetAttribute[delta, Orderless];
delta[i Integer, j Integer] :=If[i=3j, 1, 0];
delta[i Symbol, i Symbol] := 3;

Inj14]= Unprotect[Times];
Times[a_ Symbol[j Symbol], delta[i , j Symbol]] :=af[i];
Times[a_ Symbol[i Symbol, j_ ], delta[i Symbol, k ]] :=af[k, j];
Times[delta[i Symbol, j_], delta[i_ Symbol, k ]] :=delta[j, k];
Protect[Times];

The SetAttribute[delta, Orderless] command sorts the variables in delta into
standard order so that delta[j,i] is automatically changed to deltal[i,j]. The part
i_Integer specifies that the variable i must be an integer value, and the part i Symbol
specifies that the variable i must be a symbol, not a number. The subsequent code instructs
Mathematica to add new rules that use the summation convention with delta[i, j]. After
this Mathematica code is entered, the summation convention involving the Kronecker delta is
automatically enforced.



