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Preface

This manuscript is devoted to variational models, their corresponding Euler—
Lagrange equations and numerical implementations for image processing. Such
techniques allow us to solve many inverse problems by minimization and reg-
ularization using rigorous tools from function spaces, calculus of variations,
numerical analysis, and scientific computing. The most important problems in
image processing are studied here, such as image restoration and image seg-
mentation. Other related problems and applications are also presented and
analyzed in detail. The variational approach offers an optimal and elegant
solution in many cases, given knowledge about the image formation model,
constraints, and a priori information. The variational method by regulariza-
tion has been proven to be one of the most powerful techniques for solving
many image processing tasks. This book covers numerous methods and ap-
plications, with accompanying tables, illustrations, algorithms, exercises, and
online electronic material. It seeks to balance the theory with practice and
the use of computational approaches.

Our goal is to offer a general textbook on variational approaches for image
processing. Several topics are discussed in detail and may appeal to a larger
audience. Instead of minimizing overlap with existing textbooks, the aim is
for a more comprehensive and up-to-date presentation.

Each chapter includes the presentation of the problem, its mathematical
formulation as a minimization operation, discussion and analysis of its math-
ematical well-posedness, derivation of the associated Euler-Lagrange equa-
tions, numerical approximations and algorithm descriptions, several numerical
results, and a list of exercises.

In line with a desire for accessibility, this book attempts to be a self-
contained guide to variational models in image processing, providing a syn-
opsis of the required mathematical background necessary to understand the
presented methods.

There are a number of successful advanced texts, including textbooks,
on variational models and partial differential equations for image processing
and related topics from image analysis and computer vision. This is a proof
of the strong and continuing interest in these areas. This textbook focuses
specifically on the principles and techniques for variational image processing
and applications, balancing the traditional computational models with the
more modern techniques developed to answer new challenges introduced by
the new image acquisition devices.
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The audience

This text is intended primarily for advanced undergraduate and gradu-
ate students in applied mathematics, scientific computing, medical imaging,
computer vision, computer science, engineering and related fields and for en-
gineers, professionals from academia, and the image processing industry. The
manuscript can be used as a textbook for a graduate course or for a grad-
uate summer school. It will serve as a self-contained handbook and detailed
overview of the relevant variational models for image processing. The general
area of image processing and its state-of-the-art methods have become essen-
tial in many fields, including medical imaging, defense, surveillance, Internet,
television, image transmission, special effects, physics, astronomy, and other
fields that require image acquisition for further processing and analysis.

Topics not covered

There are many other important topics in variational image processing
that could not be covered here. These include higher-order models, wavelet
and statistical methods, convexification algorithms for image segmentation
and partition, proximal point methods, and other relevant applications from
computer vision and medical imaging.

Additional resources

Electronic resources accompany the manuscript. These can be found at the
online link given below, and include MATLAB™ codes for the main models
and algorithms presented in the manuscript. The electronic resources will
be updated when necessary. Other useful resources to students, instructors,
researchers and practitioners will be found as well at this link:

http://www.math.ucla.edu/~lvese/ VMIP
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