ELECTRONICS ENGINEERING SERIES

Digital Electronics 3

Finite-state Machines

Tertulien Ndjountche

Series Editor
Robert Baptist

Digital Electronics 3

Finite-state Machines

Tertulien Ndjountche

WILEY

First published 2016 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030

UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2016
The rights of Tertulien Ndjountche to be identified as the author of this work have been asserted by him
in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2016950312

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-84821-986-1

Digital Electronics 3

A, 5B 5E #EPDFIE U7 19) : www. ertongbook. com

Preface

The omnipresence of electronic devices in everyday life is accompanied by the size
reduction and the ever-increasing complexity of digital circuits. This comprehensive
and easy-to-understand book deals with the basic principles of digital electronics and
allows the reader to grasp the subtleties of digital circuits, from logic gates to finite
state machines. It presents all the aspects related to combinational logic and sequential
logic. It introduces techniques to establish logic equations in a simple and concise
manner, as well as methods for the analysis and design of digital circuits. Emphasis
has been especially laid on design approaches that can be used to ensure a reliable
operation of finite state machines. Various programmable logic circuit structures by
practical examples and well-designed exercises with worked solutions.

This series of books discusses all the different aspects of digital electronics,
following a descriptive approach combined with a gradual, detailed and
comprehensive presentation of basic concepts. The principles of combinational and
sequential logic are presented, as well as the underlying techniques for the analysis and
design of digital circuits. The analysis and design of digital circuits with increasing
complexity is facilitated by the use of abstractions at the circuit and architecture levels.
The series is divided into three volumes devoted to the following subjects:

1) combinational logic circuits;

2) sequential and arithmetic logic circuits;

3) finite state machines.

A progressive approach has been chosen and the chapters are relatively
independent of each other. To help master the subject matter and put the different

concepts and techniques into practice, the book is complemented by a selection of
exercises with solutions.

x Digital Electronics 3

Summary

This volume deals with finite state machines. These machines are characterized
by a behavior that is determined by a limited and defined number of states, and
the holding conditions for each state and the branching conditions from one state
to another. They only allow one transition at a time and can be divided into two
components: a combinational logic circuit and a sequential logic circuit. This third
volume contains the following three chapters.

1) Synchronous Finite State Machines;
2) Algorithmic State Machines;

3) Asynchronous Finite State Machines.

The reader

This book is an indispensable tool for all engineering students in a bachelors or
masters course who wish to acquire detailed and practical knowledge of digital
electronics. It is detailed enough to serve as a reference for electronic, automation
engineers and computer engineers.

Tertulien NDJOUNTCHE
August 2016

Contents

Preface

Chapter 1. Synchronous Finite State Machines

I.ILIntroduction i e
L2, State:diagram o « w s w o s wo o s memmsms s st s masms » 554
1.3. Design of synchronous finite state machines
T4 Examples e
LAT Flip-flops o oo e
1.4.2. Binary sequence detector
1.4.3. State machine implementation based on a state table
1.4.4. Variable width pulse generator
1.5. Equivalent states and minimization of the number of states
1.5.1. Implication table method
1.5.2. Partitioning method L. L.
1.5.3. Simplification of incompletely specified machines
1.6. Stateencoding i e e e
1.7. Transformation of Moore and Mealy state machines
1.8. Splitting finite state machines
1.8.1. Rules forsplitting
1.82. Example I
LEBEXGMPIE 2 © o wpsmim s memms @y vws @ o s g 289 w5
1.9. Sequence detector implementation based on a programmable circuit
1.10. Practical considerations
1.10.1. Propagation delays and race conditions
1.10.2. Timing specifications
LILLEXerciseso
1.12. Solutions

vi Digital Electronics 3

Chapter 2. Algorithmic State Machines 169
2. 1. Introdaction cooc b v n i s g e R RS e 169
2.2.Structure of an ASM L 169
2.3.ASMchart e 170
2.4 . Applications : +: csssisnsaass s o s s aamus s om e 175

2.4.1. Serial adder/subtracter Lo 175
2.4.2. Multiplier based on addition and shift operations 183
2.4.3. Divider based on subtraction and shift operations 187
2.4.4. Controller for an automatic vending machine. 189
2.4.5. Traffic lightcontroller 193
2.5.BXErCiSes . . . vt i e e 200
2.6, 80IutONS =5 s s s s smps w v E T GN T EE FE E G S YE Sk WS 205

Chapter 3. Asynchronous Finite State Machines 213
31 Introduction « < s v s s s a s ma s @ s w B R B s My s e s v E 213
32 OVEIVIEW . . i a5 s s s i m e s a A s e m mE B E G RS A 214
33.GatedDlatch. . v o v m e e s s R e s 214
3.4, Muller C-element e 218
3.5. Self-timed circuit 220
3.6. Encoding the states of an asynchronous state machine 224
3.7. Synthesis of asynchronous circuits, 227

37.1.Oscillatorycycle L 227
3.7.2. Essential and d-triohazards 228
3.7.3. Design of asynchronous state machines 239
3.8. Application examples of asynchronous state machines 240
3.8.1. Pulse synchronizer. 240
3.8.2. ASynchronous COUNET v v v v v v v v v o v oo oo a e o e 243
3.9. Implementation of asynchronous machines using SR latches or
C-elements e e e e e 247
3.10. Asynchronous state machine operating in pulse mode 251
3.11. Asynchronous state machine operating in burst mode 256
3I2:BXEICISES s s n v iws smin ainms @y s @ s ® 03 BB EH &0 E§ 258
313 80lubions & :vs iws ims s R m A i EE i wE e m BT F PR A 266

Appendix. Overview of VHDL Language 287
Al Introduction e e e 287
A2 Principlesof VHDL 287

AZLNANES «: cnnsssmemps muws G068 =0 s s 05 @ 05 0w 288
A2 COMIMENS 5 w5 5 5 55 58 55 % 5.5 5 56 % 6w ss @meidneiass 288
A23.Library and packages 289
A24 POTES . . o o e e e e e 289

Contents vii

A2.6. Datatypesandobjectso 289
A2.7. Attributes L. e e 290
A.2.8. Entity and architectureo 291
A3 Concutrent inSUCHIONS « o « v 5 + w50 v ws w o s a5 s 550 00w 292
A.3.1. Concurrent instructions with selective assignment 293
A.3.2. Concurrent instructions with conditional assignment 293
A4.Componentso i it e 294
AANGENCTICS & s we s 66 4 8 8 685 €3 $5 va s 8 s@s §8 %@ 653 296
A.4.2. The GENERATE Instruction 296
A3 Process . . . oo v i e e e e 297
A, Sequential STUCITES « ¢ v v s v s sm s s mems vwamu s w 298
A5l The IFINSEUCHON « ¢ & 55w o 6 0 ¢ wo 6 mis @ s 85 58 85 6 o5 & 298
AS5.2.CASEinstruction e 303
A6.Testbench 306
Bibliography 311

Synchronous Finite State Machines

1.1. Introduction

Digital circuits composed of combinational and sequential logic sections are
generally described as finite state machines.

A machine is synchronous when the state transitions are controlled or
synchronized by a clock signal.

A machine whose operation is not dependent on a clock signal is said to be
asynchronous.

The present state (PS) of a state machine is determined by the variables stored
in the flip-flops of the sequential section. The next state (NS) of the state machine is
defined by the circuit of the combinational logic section.

Among finite state machines, we can differentiate between the Moore model and
the Mealy model:

— Moore state machine: the state machine output depends entirely on the PS;

— Mealy state machine: the state machine output depends on the inputs and PS.

It must be noted that there are also hybrid machines with some outputs being of
Moore type and others of Mealy type.

A machine always has a finite number of states. For IV variables, the machine must
have between 2 and 2% states.

A machine is defined by specifying the number of inputs and outputs, the initial
state, the PS and the NS.

2 Digital Electronics 3

Inputs Q

Inputs

Combinational
circuit
I

PS

N

Combinational

Set'],uer‘llial -
circuit

circuit
2

SRS T i DA

Figure 1.1. Finite state machine: Moore model

(NS: next state; PS: present state)

4

Combinational
circuit

NS Sequential

circuit

b

X

Figure 1.2. Finite state machine: Mealy model

Combinational
circuit
>

(NS: next state; PS: present state)

1.2. State diagram

Consider the state diagram for the Moore state machine shown in Figure 1.3.
Starting from the initial state Sy, the machine goes to the state S; regardless of the
logic state of the input X. Assuming that the PS corresponds to Sz and that the
output is set to 1, the NS will be either S;, with the output remaining at 1 if the logic
level of the input X becomes 0, or S3, with the output being set to 0 if the input X

takes the logic level 1.

Figure 1.4(a) shows a section of the state diagram for a Mealy state machine. The
states whose binary codes are 000, 010, 001 and 011 are denoted by A, B, C and D,

> Outputs

= Outputs

Figure 1.3. Moore state machine: state diagram with
present state and next state

respectively, and the outputs are S} and S5.

We assume that B is the PS. The holding condition in state B is X Y and the
outputs S; and S take the logic state 1. The input condition X causes the machine

Synchronous Finite State Machines 3

to enter the state D and the output, Sy, is set to 0. Once in this state, the X condition
allows the machine to remain in this state. When the logic condition X Y is true, the
machine goes to the state C, where there is no holding condition and the output S; is
set to 0.

Yo 1
X

o|D|D
1lc|B

(b)

Figure 1.4. Mealy state machine: a) state diagram;
b) map showing input/next state from state B

Figure 1.4(b) shows what state the machine may move to once in the state B based
on the logic levels of inputs X and Y.

A state diagram is constructed according to certain rules. For a section of the state
diagram, such as the one illustrated in Figure 1.5, where the conditions that cause the
machine to remain in state S; and to move from S; to Sk (k = 1,2,--- ,n — 1) are
represented by Fy and F}, respectively, the following logic equations must be verified:

— Sum rule: the Boolean sum of all conditions under which a transition from a
given state occurs must be equal to 1:

Fo+Fi+-+F=1 [1.1]

— Mutual-exclusion requirement: each condition under which a transition from a
given state occurs cannot be associated with more than one transition path:

Fo=Fi+F+ -+ F, 4 [1.2]
AR=FK+FR+ -+F_ [1.3]

Fo1=Fy+Fi+ -+ Fro [1.4]

4 Digital Electronics 3

As a result, the Boolean product of both state transition conditions, F} - Fy, (I, k =
0,1,2,---,n—1and! # k), is equal to O.

Figure 1.5. Section of a state diagram

However, these relationships need not be verified for applications where certain
conditions will never happen or are not allowed (don’t-care conditions).

EXAMPLE 1.1.—Let us consider the section of the state diagram illustrated in
Figure 1.6(a). Using the Boolean transformation, we have:

X+X Y+X-Y=X+XY4+Y)=X+X=1 [1.5]

and
X=X Y+X-Y=X+NEX+Y)=X(1+Y+7)=X [1.6]
V=X +X F=K(X+¥)=XY [1.7]
X V=X+XY=XX+=X-Y [1.8]

Thus, the sum rule and the mutual-exclusion requirement are both satisfied.
Figure 1.6(b) depicts the map showing the input/NS from state A.

EXAMPLE 1.2.— Analyzing the state diagram shown in Figure 1.6(c), we can see that
the sum rule is verified while the mutual-exclusion requirement is not fulfilled because
the product of the terms X and X - Y is not equal to 0. Figure 1.6(d) shows the map
for the input/NS from state A. For the branching condition XY = 11, the NS can be
either B or C, while only one transition at a time can be carried out from a given state.
Thus, when the mutual-exclusion requirement is satisfied for a given state, no cell in
the input/NS map should contain more than one state symbol.

EXAMPLE 1.3.— A section of the state diagram of a finite state machine is depicted in
Figure 1.6(e). We can verify that the sum rule is satisfied, but not the mutual-exclusion

Synchronous Finite State Machines 5

requirement. This is because the product of the terms X and Y is not equal to 0. As
shown in Figure 1.6(f), that illustrates the input/NS starting from the state A, the X -Y
condition causes the state machine either to remain in state A or to advance to state C.
However, this ambiguity can be ignored if it is assumed that the condition X - Y will
never occur.

X X X
o o o
XY X

1 C|B 1 C [B+C | C|B

Figure 1.6. Examples of state diagram sections and
maps showing the input/next state from state A

In a state diagram, we can differentiate between conditional and unconditional
transitions:

— conditional transitions are only carried out on the edge of a clock signal when
a certain condition, relating to the inputs, is verified. There are always at least two
conditional transitions from the same state;

— unconditional transitions are automatically carried out on the occurrence of a
clock signal edge. Only one unconditional transition is possible from a given state.

Let us consider an example: the state diagram for an incompletely specified Moore
state machine shown in Figure 1.7. There are two inputs and the output can take either
0 or 1 or a don’t-care state, represented by (). The only unconditional transition exists
between the states S3 and Sy.

The operation of this machine can also be described based on the state table shown
in Table 1.1. Starting from the state S3, where the output is in the don’t-care state, the
machine goes to Sy regardless of the logic combination of the inputs.

6 Digital Electronics 3

Figure 1.7. State diagram for an incompletely specified
state machine based on Moore model

PS NS Output
XY =00 01 10 11

So So So S1 Si 0

S So So S1 S 0

S So 53 Sz 52 1

Sa So So So So -

Table 1.1. State table of an incompletely specified
state machine based on Moore model

1.3. Design of synchronous finite state machines

The procedure for designing synchronous finite state machines may include the
following steps:

1) derive the state diagram;

2) draw up the state table;

3) assign bit combinations to the variables in order to represent the different states
(encoding the different states) and draw up the corresponding state table;

4) choose the flip-flop type;
5) derive the input equations based on Karnaugh maps;

6) represent the resulting logic circuit.

