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Preface

The radical change of methods used in mathematical physics (quantum
field theory and elementary particle physics, solid state physics, theory of
dynamical systems etc.) influenced by the great power of modern ma-
thematics calls for a monograph such as this which is aimed primarily at
making available to physical scientists the mathematical machinery related
to differentiable manifold ideas relevant to physics. The reader will find
that the “‘geometry spirit” working methods provide a new marvellously
unified set of tools for an alternate description of natural phenomena which
goes beyond the description obtained in terms of analytical methods.

The concept of a differential form is associated with the differentiable
manifold idea-one of the keystones of contemporary mathematics — ap-
pearing in the theory of partial differential equations, algebraic topology
and differential geometry. In studying geometry or physical laws by tensor
methods it turns out that tensor analysis is not adequate. It demands a
nonsingular coordinate system with respect to which one can give the
components of vectors and tensors. However, according to thes definitign
of a differentiable manifold, a single nonsingular coordinate system is not
enough to cover a manifold. Therefore, in a general differentiable manifold
it will be impossible to describe a tensor field by giving its components with.
respect to a single set of coordinates. Consequently the components of a
tensor field are not as.important as the concept that can be abstracted from
them: the intrinsic representation of a tensor. Of all the types of tensor
fields, the skew-symmetric covariant ones are intrinsically represented by
differential forms. Physical theories, in particular Maxwell’s theory, the.
Yang-Mills theory, the theory of relativity, but also physical laws of
thermodynamics and analytical mechanics (symplectic mechanics) can be
given a neat and concise formulation in terms of ‘them.

vii



viii PREFACE

Differential forms have also been used by de Rham to express a déep
relation between the topological structure of a manifold and certain aspects
of vector analysis on a manifold. Elie Cartan used differential forms to
develop his approach to differential systems and Riemannian geometry.
Our main concern in this book is therefore with a straightforward ex-
position of vector analysis on manifolds which is designed as a com-
prehensive elementary approach to Cartan’s and de Rham’s work. In
particular we are also going to exhibit that the generalization of Stokes’
theorem and the divergence theorem to general manifolds is very clumsy
unless one employs a systematic development of the calculus of differential
forms. In taking up this calculus and its use in formulating integration
theory we provide physicists with contemporary mathematical methods. At
the same time, we wish to contribute towards a conceptually intelligible
and transparent vector-analytical description of physical laws. Therefore,
many physical applications have been interspersed in the presentation
throughout this book. In particular, the last two chapters are completely
devoted to physical sciences.

During the past years (1969-77) the author has delivered lectures on
differential forms and their applications in mathematical physics in various
universities to audiences consisting of mathematicians, mathematical
physicists, theoretical physicists, mathematically inclined experimental
physicists and engineers. This book constitutes an extended and improved
version of the material presented in these lectures. Nevertheless, it should
be emphasized that one of the goals of the present book is to develop an
intuition and working knowledge of the subject ‘‘differential forms in
mathematical physics” without insisting on an extremely high degree of
mathematical rigour or precision as would be required if the audience
consisted of mathematicians alone.

The prerequisites required for a ‘“reasonable” reading of this volume
include a working knowledge of set theory, linear algebra, calculus as well
as of undergraduate physics education.

I am deeply indebted to Claire for her constant encouragement and her
valuable criticism. It is also my pleasant duty to thank my colleagues
Professors Holmann and Rummler (Fribourg University), Mislin and Jost
(Swiss Institute of Technology), Crumeyrolle (Université Paul-Sabatier,
Toulouse), Kalina and Lawrynowicz (Instytut matematyczny, Polskiej
Akademii Nauk, ¥.odz), E. Heil (Technische Hochschule, Darmstadt) and
Geissler (Hamburg University) for their critical reading and many helpful
suggestions. My special thanks to Ernst Seligmann, who devoted consider-
able time and effort in providing me, in a very cooperative way, with
substantial scientific material relevant to this book.
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CHAPTER 1

TOPOLOGICAL PRELIMINARIES

Summary. Topological spaces are the objects of study of this chapter. A topological space
con: sof aset E and a “topology” on E which may be defined equivalently in terms of open
sets, closed sets or neighbourhoods. Open set topologies or closed set topologies, although
devoid of the intuitive appeal of the neighbourhood topology, are logically simpler and
therefore provide a better method of defining a topology (Section 2).

Many properties of topological spaces depend on the distribution of the open sets in the
space. If a topological space has “‘few” open sets, it is more likely to be first or second
countable. On the other hand, if a topological space has “many” or “‘enough” open sets,
sequences of this space have unique limits, provided that a suitable “'separation property” is
postulated for this space. This is achieved, if the axiomatization of a topological space is
supplemented by a separation axiom. We restrict ourselves, throughout this book to spaces
which are defined by the Hausdorff separation axiom (Section 5).

Formally topology is characterized as the study of those properties of spaces (as for
instance compactness or connectedness, cf. Section 5) which are not changed under
homeomorphisms (Section 4), that is, topology is the study of topological invariants.

Prerequisites. Set theory (set operations, cartesian products, mappings).

1. Introduction

The notion of topology gives sense to the intuitive ideas of nearness and
continuity. It appears that there are equivalent ways of defining a topology:
In terms of open sets, or of closed sets or using as primitive notion the
notion of neighbourhood of a point. The former definitions, although
devoid of the intuitive appeal of the neighbourhood definition, are logically
simpler and therefore provide a better method of defining a topology.

We summarize, omitting most proofs, in Chapter 1 the preliminary
topological material necessary for this book and refer the reader for a more
detailed account to the quoted reference books.

3



4 TOPOLOGICAL PRELIMINARIES Ch. 1. §2.
2. Topological spaces

A topological space is a non-empty set E together with a family T =
(U; | i € 1) of subsets of E satisfying the following axioms:

01) E€ZT, €T (where @ denotes the empty set).

(02) The intersection of any finite number of sets in T belongs to X, i.e.

J finite, JCI > NUEZT.

i€

(03)  The union of any number of sets in T helongs to T, i.e.
Jcr > Uvues.

The elements of T are called T-open sets, or simply open sets in E. The
pair (E, ) is called a topological space.

Example 2.1. The class T = {E, @}, consisting of E and § alone is itself a
topology called the indiscrete topology. (E, <) is then called an indiscrete
topological space.

Example 2.2. Let $ = B(F) denote the family of all subsets of E. Observe
that P(E) satisfies the axioms (01)-(03) for a topology on E. This topology
is called the discrete topology; the pair (E,¥) is called a discrete
topological space.

Example 2.3. Let E = R be the real line. A topology on R can be defined as
follows: For any x € R, consider the open intervals (a, b) contalmng x, that
is the class

{U (a, b)) | a, b; ER}.

If a;, = bi! then (a;, b,) = ﬂ.

By a straightforward verification T is seen to satisfy the axioms (01)-
(03). This topology is referred as the usual topology on R. Similarly, the usual
topology on R", the product set of n copies of the set R, is given by the family
T of all open sets U; X Uy X - -+ X U,, where U; = (a;, b;), 1 <i < n, are open
intervals in R. We shall always assume the usual topology on R and R" unless
otherwise specified.

Let (E,¥) be a topological space. A subset A of E is closed if its
complement CzA:={x € E|x& A} is an open set.



"Ch. 1. §2. TOPOLOGICAL SPACES 5

From the axioms (01), (02) and (03) of a topological space and De
Morgan’s laws one infers: The family = (A; | i € I) of closed subsets of E
satisfies the following conditions:

(C1) E and @ are cl.osed sets, i.e. EEZ, #eX.

(C2) The union of any finite number of sets in ¥ belongs to T:

T={i; ..., 0}JCI > L"JA,ei'.

(C3) The intersection of any number of sets in ¥ belongs to , i.e.

JclI > NAESL.
From (01), (02) and (03) we infer that, by duality, an equivalent definition of a
topological space in terms of closed sets is possible. We denote this
topological space by (E, ).

Let x €EE be a point in a topological space’ E. Any subset V of E
containing an open set U such that x € U is called a neighbourhood of x
denoted by V = V(x). In particular, any open set U is a neighbourhood of
each of its points. The class of all neighbourhoods of x € E, denoted by
B(x), is called the fundamental neighbourhood system of x.

Example 2.4. Let x €R. Then each closed interval [x — 8, x + 8] with centre
X, is a neighbourhood of x since it contains the open interval (x — 8, x + 8)
containing x.

The following properties of neighbourhoods may be used to define a
topology on E:

(V1) %B(x) is not empty and x belongs to each member of B, i.e.
 x€E, VEBR) > x€V. w, 1

T(V2) (VV,, V,EBX))NEV;3E B(x)): (VsC ViNV,).

(V3) If VEB(x), yE V, there is a U €28(y) such that U C V.

It is seen that the structures of open set topology, closed set topology and
neighborhood topology determine one another: so topology may be
developed using either as a starting point. By virtue of these different
axiomatizations of topological spaces, the word “topology’’ will be used to
denote these equivalent structures. Thus a topological space carries all these
structures, and may be defined by one of them. Finally, let (E,Z) be a
topological space. A class B of open subsets of E, BC T, is a base for the
topology ¥ iff: A



