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Preface

A large number of proteins are synthesized by the living cell for a
variety of functions. Many are enzymic catalysts of chemical reactions,
others form part of the intracellular structures seen under the micro-
scope. Recent investigations have confirmed that certain proteins, at
least, consist of a unique sequence of amino acids. This book sets out
to describe in a readily understandable manner how this genetically-
determined sequence is specified and constructed, so forming the
molecular species necessary to perform the functions of the cell.

Research on this fundamental topic has been performed on a large
number of organisms and a variety of plant and animal tissues. Especi-
ally popular have been studies upon the intestinal bacterial species
Escherichia coli, immature red blood corpuscles (reticulocytes), pea-
seedlings, ascites tumour cells, rat liver, and yeast. In this connection
the author has had considerable personal experience of the last two
materials in this list, and in fact all the fundamental discoveries con-
cerning the so-called classical pathway of protein biosynthesis (see on,
Part A) seem to apply in their essentials to all these systems. Mention
is made in the text of the particular organism used to obtain the results,
and significant differences are pointed out where appropriate.

This book is intended both as an introduction to the field for students
of biochemistry, microbiology, physiology and chemistry, and as a
reference book and entry to the literature for research workers in
related fields. Review references are provided wherever expedient
and the other references are often as recent as possible except when
historical aspects are under review. Sections on Recent Trends and
Future Developments are included at the ends of chapters, and these
are usually reserved for the frontiers of the subject. The student reader
is advised to read the Summary near the end of Chapters 2 to 11 before
starting upon the chapter itself so that the fundamentals of the subject
may be clearly understood.

Many thanks are due to J.A.W. for preparing the diagrams and
assisting with the reading of the proofs, and to M.M.T. for typing the
manuscript.
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Chapter One

The Molecular Structure of Proteins
and Nucleic Acids

I Proteins

(@) The Primary Structure of Proteins
Protein molecules are derived from the ‘head to tail’ condensation of
many units of each of about twenty amino acids (see fig. 1). Every free
amino acid used for the building of proteins has an amino and a
carboxyl grouping attached to the same carbon atom. Further, often
complex, groups are attached to this carbon atom so forming the
twenty recognized varieties of amino acid. If one considers a linear
arrangement of amino acids, each amino grouping is seen to be
adjacent to a carboxyl grouping in its neighbour. Loss of the atoms of
one molecule of water per amino acid with the simultaneous linking
by peptide-bond formation of the remaining amino acid residues
then gives rise to the protein molecule (see fig. 2). This idealized
scheme for the formation of protein obviously allows protein molecules
to vary in length and to have in general a free amino group at one end
of the chain-like sequence and a free carboxyl group zat the other end.
These features of the structure of protein molecules will be discussed
more fully later, for their synthesis is now known to be a stepwise
process rather than the simultaneous condensation of several amino
acids. The protein chain is lengthened by one amino acid at a time,
where the latest amino acid to arrive at the site of protein synthesis
joins on to the end of the growing protein chain. The latter has its free
carboxyl grouping in reactive form due to combination with transfer
ribonucleic acid (see chapter 3). Because the amino acids are carboxyl-
activated, chain-growth proceeds from what will be the free amino
(N-terminal) end of the finished protein chain. Thus the amino acid
required for the free amino end of the protein chain is the first to be
laid down on the ribonucleic acid building site (template action of
messenger ribonucleic acid on ribosome support; chapter 6).
Protein chains can consist of well over a hundredaminoacid residues,
and in fact some protein molecules contain more than one protein
3



ORGANIZATION FOR PROTEIN BIOSYNTHESIS
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. | ~CHj
4. Leucine (Leu) NH;—CH—CH,—CH{_
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. l _CH;
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CH,—CH;
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COOH OH
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MOLECULAR STRUCTURE OF PROTEINS
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Fic. 1. Amino acids usually found in proteins—neutral amino
acids categories A-D
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MOLECULAR STRUCTURE OF PROTEINS 7

chain. Haemogiobin (see on) the oxygen-carrying substance of blood
contains the protein called globin, which consists of four such chains,
two of one amino acid sequence, and two of another. It was precisely
the fact that proteins often have high molecular weights that was
responsible for their early recognition, and naming as colloids; they
being non-dialysable and viscous substances which displayed opal-
escence in solution. The explanation for most of these properties can
be readily formulated simply on the basis of the high molecular weight.
Thus the molecules of protein are too large to pass through the fine
molecular mesh of dialysis membranes, while their high viscosity can
be considered, in simplified terms, to be due to the entangling of their
long chains, giving rise to a dragging friction.

(6) Structural Studies of Insulin®

The characteristic activity, enzymic or hormonal, of certain proteins
is known to be directly controlled by the linear arrangement of their
constituent amino acids in each of their protein chains. Although the
particular proportions of the various amino acids in many proteins
have been known for some time, the complete sequence of amino
acids in a protein molecule was reported for the first time, as recently as
1955, by Sanger and co-authors [1]. They elucidated the structure of
insulin, the well-known hormone popularly associated with the meta-
bolism of carbohydrate, which can be conveniently obtained in reason-
able quantity from ox pancreas. The amino acid composition of insulin
had been extensively investigated by previous workers. In general, the
determination of the gross amino acid composition of a proteininvolves
the breakage of the peptide bonds joining the amino acid residues by a
hydrolytic procedure with hot mineral acid; often 6N-hydrochloric
acid for sixteen hours at 100°C. Almost all the amino acids of a fairly
pure protein can be recovered in good yield after this treatment, and a
satisfactory correction can be made for the losses due to the destruction
of the more labile amino acids. In addition to this, one amino acid
called tryptophan (fig. 13) is destroyed. However, it can be recovered,
unlike many amino acids, after the breakdown of protein with hot
alkaline solutions. Insulin, in fact, was fonnd to be free of tryptophan,
so this complicating factor was absent.

Physical studies on purified insulin gave some promise that this
protein, unlike many others, was of relatively small size, a feature
which would enormously facilitate the subsequent investigation. An
* Recently synthesized by chemical methods.

2



8 ORGANIZATION FOR PROTEIN BIOSYNTHESIS

account of these techniques can be found in The Proteins [2]. The
presence of the amino acid cystine in relatively large amounts in insulin
allows the possibility that each half of this amino acid is in a distinct
protein chain. Reference to fig. 3 shows how these protein chains are
joined together by the two sulphur atoms constituting the disulphide
bond. This bond must be broken before the discrete protein chains in
the intact hormone can be separated and examined. This was accom-
plished using a specific oxidizing agent, performic acid, thus separating
the insulin molecule into its two protein chains without causing any
appreciable secondary damage. Each cystine residue is converted into
two cysteic acid residues by this treatment, one remaining in each of
the two chains (see fig. 3).

' H—R' R i CH_g? il
Lo bk g
II\IH : I!IH 1111{ N
(I:H—cnz_salfﬁs_cnz—én o> (H—CH—SOH Ho,s—cuz_(lgu
(IIO : (0] CO (&0]
IIQH ‘ NH I‘lﬂ'{ IlIH
S g™t RﬁéH d_git Rk
l Cross-linked chains ! Freed chains !

F1c. 3. Cleavage of disulphide crosslinks between protein chains
with performic acid (HCO3;H)

These investigators (Sanger et al. [1], among others) have spent
many years in developing methods for determining the sequence
of amino acids in protein chains. These methods involve the fragmen-
tation of the long chains into very small portions containing, in some
cases, only two amino acid residues joined together as a dipeptide.
This can be achieved using mineral acids under carefully controlled
conditions, milder than those which cause complete breakdown to
amino acids. Somewhat larger units can be isolated from proteins by
the careful use of a variety of proteolytic* enzymes. The peptides
obtained are separated, and the sequence of the amino acids contained
in them can be elucidated by a variety of techniques. One of these
involves the reaction of the terminal amino acid, bearing the free amino
groupatoneend of the peptide chain, with 2: 4-dinitro 1-fluorobenzene.
* Protein-splitting.
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The reactive fluorine atom displaces a hydrogen atom from the
terminal amino group with the formation of the dinitrophenyl deri-
vative of the protein. The dinitrophenyl derivative of this N-terminal
amino acid is liberated intact after hydrolysis of the modified protein
with acid: these derivatives of amino acids are bright yellow com-
pounds, which facilitates their separation and identification by, for
example, paper chromatography [3]. Identification of the N-terminal
amino acid of a dipeptide automatically identifies the sequence of the
two amino acids it contains, as the overall amino acid composition can
be easily determined. The amino acid sequences of many small
peptides can be elucidated in this way until fragments of the whole
protein chain have been examined, many of which overlap. The
information on overlapping peptide sequences was fitted together for
insulin, and was found to correspond to a unique unequivocal struc-
ture. This amazingly successful piece of work earned a Nobel Prize
for F. Sanger, -and was in fact the first demonstration that a unique
covalent structure existed for any protein. Up to this time many
research workers considered that all protein preparations, even when
of highest purity and physical homogeneity, consisted of a closely
related mixture of molecular species showing a range of similar amino
acid sequences. This may be true in some cases, but is certainly not so
for 'the insulin from various species of animals. The outstanding
conclusion of biological interest from this work was that the existence
of a unique primary structure for a protein must mean that the infor-
mation for making it is just as specific. Thus a precise genetic code
existed which in some way allowed the passage of information from the
nuclear genes to the protein-synthesizing site in the cytoplasm of the
cell. This code, held in the structure of messenger ribonucleic acid, is
discussed in chapter 7. Ox insulin was found to contain two relatively
short protein chains, one containing twenty-one amino acid residues
and the other thirty, joined together by two disulphide bonds. Sub-
sequent investigations [4] showed that the insulins from pig and sheep
pancreas were very similar to ox insulin, except that one trio of amino
acids in the shorter of the two protein chains was different in each
type (fig. 4). Whether this difference has arisen because of some fine
distinction between the metabolism of these species of animals is not
clear. Such differences may arise accidentally, where the two structures
may be of equal survival value to the species. Contrary to the action
of some enzymes (see on), the complete structural integrity of insulin
seems necessary to maintain its hormonal action (Young [5]).



