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Preface

There have been significant advances in rock
mechanics and understanding of the behavior
of rock with developments in science and engi-
neering. This has occurred at the same time as
there has been greater demand for the utilization
of underground space that has in many cases
pushed the limits in the engineering design of
underground excavations while there has been
the continual need to improve safety and reduce
the cost of excavation. It is imperative, then, that
research continues which will provide the
knowledge necessary to underpin the design
and development of new excavation techniques.

The book summarizes and enriches the latest
research results on the theory of rock me-
chanics, analytical methods, innovative tech-
nologies, and its applications in practical
engineering. The book is divided into six chap-
ters including such features as Chapter 1: Rock
Testing (Shuren Wang Sections 1-7; Paul
Hagan Section 8); Chapter 2: Rock Bolting
(Chen Cao Sections 1—7; Paul Hagan Section
8); Chapter 3: Grouted Anchor (Paul Hagan);
Chapter 4: Tunneling Engineering (Shuren
Wang); Chapter 5: Slope Engineering (Shuren
Wang); and Chapter 6: Mining Geomechanics
(Shuren Wang). This book is innovative, prac-
tical, and rich in content, which can be of great

use and interest to the researchers undertaking
various geotechnical engineering and rock me-
chanics, teachers and students in the related
universities, as well as on-site technicians.

The material presented in this book contrib-
utes to the expansion of knowledge related to
rock mechanics. The authors, through their
extensive fundamental and applied research
over the past decade, cover a diverse range of
topics from the microbehavior of rock and rock
properties through the interaction of large-scale
rock masses and its effect on surface subsidence,
mechanics of rock cutting, techniques to improve
the strength and integrity of rock structures in
surface and underground excavations, and
improvement in approaches to modeling tech-
niques used in engineering design.

Shuren Wang, PhD
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Polytechnic University, China
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Rock Testing

1. INSTABILITY
CHARACTERISTICS OF A SINGLE
SANDSTONE PLATE

1.1 Introduction

In China, numerous shallow mined-out areas
have been left due to the disordered mining by
the private coal mines. It is of important theoret-
ical and practical value for the roof stability eval-
uation and disaster forecasting to research the
deformation rupture, instability mechanism,
and failure mode of the rock roof in the mined-
out areas.

The studies on the instability of the rock roof in
the mining field have been a main topic both for
scholars in China and abroad. For example, ac-
cording to elastic thin plate theory, Wang et al.
(2006) analyzed the fracture instability character-
istics of the roof under different mining distances
in the mining work face. Wang et al. (2008a)
analyzed the rheological failure characteristics
of the roof in the mined-out areas through
combining the thin plate and rheology theories.
Pan et al. (2013) had conducted the analytical
analysis of the variation trend of the bending
moment, the deflection, and the shear force of
the hard roof in the mining field. This research
is inclined to adopt traditional analytic methods
to probe into the roof stability. New theories
and methods have been used in recent years,
Zhao et al. (2010) utilized the catastrophe theory

Advances in Rock-Support and Geotechnical Engineering
http://dx.doi.org/10.1016/B978-0-12-810552-8.00001-5

to set up vertical deformation model of the over-
lapping roof in the mined-out areas, and put for-
ward the criteria for evaluating the roof stability.
Wang et al. (2013c) analyzed the chaos and sto-
chastic resonance phenomenon produced in the
roof during the evolutionary process of the rock
beam deformation. Meanwhile, some numerical
computation methods were applied in discussing
the mechanical response of rock plate or beam.
Wang et al. (2008a) analyzed the blast-induced
stress wave propagation and the spalling damage
in a rock plate by using the finite-difference code.
Nomiko et al. (2002) researched the mechanical
response of the multijointed roof beams using
two dimensional distinct element code. Mazor
et al. (2009) examined the arching mechanism of
the blocky rock mass deformation after the un-
derground tunnel being excavated using the
discrete element method. Cravero and Iabichino
(2004) discussed the flexural failure of a gneiss
slab from a quarry face by virtue of linear elastic
fracture mechanics (LEFM) and finite element
method (FEM).

In summary, though many research achieve-
ments have been made, the most results still
lack laboratory testing and need to be verified.
In addition, some numerical calculations were
conducted based on the continuum mechanics,
which could not reflect the spatial heterogeneity
and the anisotropic effect of the roof in the mining
field. Only a few researchers utilized the discrete
element methods to study the macromechanical

Copyright © 2016 Tsinghua University Press Lid.
Published by Elsevier Inc. All rights reserved.



2 1. ROCK TESTING

response of the rock plate, and did not further
explore the microscopic damage of the rock plate.
Therefore, a new loading device was developed
to study the rock-arch instability characteristics
of the plate, and particle flow code (PFC) was
used to further probe into the microscopic dam-
age of the rock plate under the concentrated
and the uniform loading, respectively.

1.2 Loading Experiment of Rock Plate

1.2.1 Samples of Rock Plate

The rock samples used in the test were
Hawkesbury sandstone, which obtained from
Gosford Quarry in Sydney, Australia. The quartz
sandstones which contained a small quantity of
feldspars, siderite, and clay minerals were
formed in marine sedimentary basin of the
mid-Triassic, and located on the top of coal-
bearing strata. The surface of specimen exhibited
local red rather than white because of the content
and distribution of iron oxide.

For the single-layer roof of the mined-out areas,
it could be classified into two categories according
to the thickness: the thin plate and the thick plate.
And the roof was always made up of various com-
binations of the thin plates and the thick plates.
Thus, according to the definition of the thin plate
and the thick plate in elastic mechanics, the spec-
imen size of the thick plate was deigned to
190 mm x 75 mm x 24 mm (length, width, and
thickness) and that of the thin plate was deigned
to 190 mm x 75 mm x 14 mm (length, width,
and thickness). The specimens were obtained by
cutting the same sandstone in the laboratory of
School of Mining Engineering, University of
New South Wales. The physical—mechanical pa-
rameters of rock plates were shown in Table 1.1.

1.2.2 Loading Equipment

The MTS-851 rock mechanics testing machine
was selected as loading equipment, and the load
was controlled by vertical displacement and
loading rate was set 1 x 10~? mm/s (Potyondy
and Cundall, 2004). The vertical force and
displacement occurred in the process of the test
and were automatically recorded in real time
by a data acquisition system.

As shown in Fig. 1.1, the concentrated and
the uniform-loading test sets mainly consisted
of three parts. The top was a point-loading for
the concentrated loading or an assembly of the
steel balls for the uniform loading. The middle
was a loading framework which included four
bolts with nuts connecting the steel plates on
both sides, and the lateral pressure cell was
placed between the deformable steel plate and
the thick steel plate so as to monitor the hori-
zontal force. The capacity of the lateral pressure
cell Low Pressure X Type (LPX) was 1000 kg.
The bottom was a rectangle steel foundation,
the rotatable hinge supports were set on both
sides of the loading framework to maintain con-
necting with the steel plates.

1.2.3 Acoustic Equipment and Data
Acquisition System

To monitor the cracks initiated and identify
the failure location of the rock plate, the USB
Acoustic Emission (AE) Nodes were used in
the test. The USB AE Node is a single channel
AE digital signal processor with full AE hit and
time based features. In the test there were four
USB AE nodes being connected to a USB hub
for multichannel operation (Fig. 1.2). All these
AE nodes were made in MISTRAS Group, Inc.,
in the United States.

TABLE 1.1 Physical and Mechanical Parameters of Rock Plates

Density Elastic Modulus Poisson Cohesion  Friction Angle Tensile Strength Compression
Name (kg/m®) (GPa) Ratio (MPa) (Degrees) (MPa) Strength (MPa)
Sandstone 2650 2.7 0.20 2.8 45 0.95 135
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(B)

FIGURE 1.1 Loading experiment for the rock plate. (A) Concentrated loading. (B) Uniform loading.

MTS loading

FIGURE 1.2 Mechanics Testing System (MTS) connection

with acoustic emission monitoring system diagram.
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1.3 Experiment Results and Analysis

1.3.1 Characteristic of
Force—Displacement Curve

As shown in Fig. 1.3, the vertical force-
displacement curves appeared two peaks
under both the concentrate loading and the uni-
form loading, and the second peak value is
higher than the first one. The thin rock plate
showed the similarity cases in the test with
the thick plate; only the peak values of the ver-
tical and the horizontal force were lower than
that of the thick one. In general, the curves of

(B)

Vertical force
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@
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FIGURE 1.3 Force—displacement curves under different loading conditions. (A) Concentrated loading. (B) Uniform

loading.



4 1. ROCK TESTING

the force—displacement could be classified as
four mechanical response stages as follows
(Fig. 1.1A):

Stage 1: The rock plate was in the small
deformation elastic stage. With the vertical
force slowly increasing, the vertical
displacement grew gradually. On the
contrary, the horizontal force showed a slight
decrease, which was mainly caused by the
slight horizontal shrink of the rock plate
during the loading process.

Stage 2: The rock plate produced a brittle
rupture and formed the rock-arch structure.
As the vertical displacement went to about
2.5 mm, the vertical force appeared to first
increase abruptly and then drop sharply in a
small interval, which indicated the rock plate
producing a brittle rupture. Subsequently,
the rock-arch structure was formed under
the vertical and the horizontal reaction
forces, and the horizontal force started to
increase.

Stage 3: The rock-arch structure began to
bear loads and produced deformation. With
the vertical force increasing, the middle
hinge point of the rock-arch structure moved
down, and the two flanks of the rock-arch
rotated around the hinge point, respectively.
Such kinds of motion would stretch the rock-
arch structure in the horizontal direction and
squeezed the plate in two sides, and the
horizontal force showed a significant
growth.

Stage 4: The hinged rock-arch structure
became unstable. With the vertical force
continuously increasing, the middle hinged
point of the rock-arch structure moved down
constantly, and when the hinged point
exceeded the horizontal line formed by the
hinged point and two ends of the plate, the
rock-arch structure became thoroughly
unstable.

Under the uniform loading, the damage and
fracture extent of the rock plate was more serious

than that under the concentrated loading, espe-
cially at the two ends of the rock plate (Fig. 1.1B).
As shown in Fig. 1.3, the load—displacement
curve showed similarity with the concentrated
loading, and the peak value of the vertical force
was greater than that under the concentrated
loading.

1.3.2 Acoustic Characteristic of the Rock-
Plate Failure

As shown in Fig. 1.4, in the beginning of the
stage two, the AE hits under the uniform loading
were greater than that under the concentrated
loading, which was about 5000 and 4500, respec-
tively. In Stage 3 and Stage 4, the AE hits were
also greater and more evenly distributed under
the uniform loading compared with the concen-
trated loading, which was about 5000 and 3000,
respectively.

As shown in the AE location map (Figs. 1.5
and 1.6), the results showed obvious differences
in the initial crack position and the cracks distri-
bution of the rock plate under different loading
conditions. When the rock-arch structure went
into instability, there also showed the differ-
ences in the damage extent and scope between
the two loading methods. All in all, the results
of AE hits and location showed the over-
damage extent and scope of the rock plate
caused by the uniform loading were more
serious than that under the concentrated
loading condition.

1.4 Numerical Simulations of the
Loading Test

1.4.1 Parameters Calibration of the
Rock Plate

The rock plate was treated as the porous and
solid material that consisted of particles and
cement bodies. The force—displacement curve
was simulated under the concentrated loading
using the three-dimensional particle flow code
(PFC3D).
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FIGURE 1.4 Acoustic emission hits and force—displacement curves under different loading conditions. (A) Concentrated

loading. (B) Uniform loading.

Before the numerical simulation model could
be built, the microparameters needed to be
adjusted repeatedly and finalized until the mac-
romechanical parameters calculated were
consistent with the physical macromechanical
parameters.

The microparameters required to be adjusted
were as follows: p is ball density, Ry, is mini-
mum ball radius, R,ao is ball size ratio, 2 is
parallel-bond radius multiplier, E. is ball—ball
contact modulus, E. is parallel-bond modulus,
k./ks is ball stiffness ratio, ]—cn/ES is parallel-
bond stiffness ratio, u is ball friction coefficient,
. is parallel-bond normal strength, and 7. is
parallel-bond shear strength. The micropara-
meters required to be adjusted are listed in
Table 1.2.

1.4.2 The Computational Model

Take the thick plate 190 mm x 75 mm x
24 mm (length, width, and thickness) as an
example to show how to build the numerical
calculation model.

First, a parallelepiped specimen consisting of
arbitrary particles confined by six frictionless
walls was generated by the radius expansion

method. Second, the radii of all particles were
changed uniformly to achieve a specified
isotropic stress so as to reduce the magnitude
of locked-in stresses that would develop
after the subsequent bond installation. In this pa-
per the isotropic stress was set to 0.1 MPa. Third,
the floating particles that had less than three con-
tacts were eliminated. Fourth, the parallel bonds
were installed throughout the assembly between
all particles that were in near proximity to
finalize the specimen. Finally, the loading de-
vices were installed on the rock plate as shown
in Fig. 1.7.

A square wall with sides 10 mm was made on
the top of the rock plate as the concentrated
loading, and the loading rate was set to
0.01 m/s (The loading rate could be regarded
as the quasistatic loading). The two cylinder
walls were placed on the right and left at the bot-
tom respectively as supporting base. The two
walls located on both sides could install the
initial horizontal force at the specified value.
During the loading, the cracks generated in the
rock plate were monitored in real time. The red
cracks represented the tensile fracture, and the
black ones represented the shear fracture.
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1.4.3 Analysis of Numerical Simulation
Results

As shown in Fig. 1.8, since the interaction
forces among the particles were simplified in
PFC3D, there were some differences in the verti-
cal force—horizontal force—displacement simu-
lated curves compared with the physical
experimental results, but the variation trend of

] \ ] I ] 1 ] | 1 1
100 10 120 130 140 150 160 170 180 190 "

Acoustic emission location of rock plate under concentrated loading. (A) Initial cracks. (B) Ultimate cracks.

the curves was basically the same for two cases,
so the physical experimental results confirmed
the numerical credibility.

In the elastic deformation stage (Fig. 1.9A),
the displacement vector field described that a
slight elastic deformation produced in the rock
plate, and at the same time there was no crack
generated in this stage. In the brittle rupture
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FIGURE 1.6 Acoustic emission location of rock plate under uniform loading. (A) Initial cracks. (B) Ultimate cracks.

TABLE 1.2 Microparameters of the Model in PFC3D

p (kg/m®) Ry, (mm)  Rgge o i E.(GPa) E.(GPa) kyk, kn/ks @ (MPa) 7% (MPa)

2650 1.2 1.66 0.5 1.0 2.7 28 1.8 1.8 16 16
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FIGURE 1.7 Computational model and its boundaries.

stage (Fig. 1.9B), there was many tensile cracks
produced in the rock plate, and these tensile
cracks formed a tensile failure plane in the rock
plate. In the rock-arch bearing load stage
(Fig. 1.9C), the shearing and tension cracks
emerged in the hinged plane and both ends of
the rock plate. In the rock-arch instability stage
(Fig. 1.9D), the rock-arch structure had a large
deformation, and parts of the particles in the
hinged plane of both sides had escaped from
the rock plate mainly due to the squeezing
fracture.

As shown in Fig. 1.10, the number of shear
cracks obeyed the S-figure curve during the
whole mechanical response process, which was

Vertical force
—— Horizontal force

Stage 4

H
st

Force (kN)
w
1

T T T

0 2 4 6 8 10
Displacement (mm)

FIGURE 1.8 Force—displacement relationship curves.

also applicable to the tensile cracks only after
the brittle rupture. When the vertical displace-
ment reached around 1.0 mm, the number of
the tensile cracks surged to 300. As the displace-
ment varied in the interval 1.0-2.5 mm, the
crack development kept almost unchanged.
However, with the displacement continuously
increasing, the number of both shearing and ten-
sion cracks kept increasing, the hinged planes
and both ends of the rock plate showed the
mixture of shearing and tensile cracks. As rock-
arch structure went into instability, the number
of cracks still kept significant increasing until
the displacement reached to 6 mm.

1.5 Factors Sensitive Analysis
of Rock-Arch Instability

1.5.1 Material Parameter Effect

As shown in Fig. 1.11, with the friction coeffi-
cient of the particles increasing, the peak values
of the vertical force and the horizontal force of
the rock-arch structure also increased. This was
mainly because the friction growth enhanced
the peak strength of the rock material, namely af-
ter breakage of the parallel bond, the strength of
the rock material often contributed to the contact
friction of the particles.

1.5.2 Geometry Size Effect

As shown in Fig. 1.12, the length, width, and
thickness of the rock plate changed, respec-
tively, to reveal the size effect on the instability
of the rock-arch structure. With the length of the
rock plate increasing, the peak values of the ver-
tical and the horizontal force were gradually
decreased, and the whole variation interval
was small. With the width and the thickness
of the rock plate increasing, the peak values of
the vertical and the horizontal force showed
obvious growth. In short, the response of the
rock-arch structure instability was more sensi-
tive to the width and thickness compared with
the length.



