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“I came to offer thee a flower,
But thou must have all my garden,-
It is thine.”

(Rabindranath Tagore)
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Preface

This book has a two-fold objective: giving the reader a non-conventional
introduction to the representation theory for the rotation and the homo-
geneous Lorentz groups, that will allow them to understand these topics
better, and to show how the insights gained this way can lead to a better
understanding of quantum mechanics. Contrary to what a knowledgeable
reader may expect on the basis of this statement, it will not be something
he has seen elsewhere, neither for group theory nor for quantum mechanics.

This alternative approach to the representation theory is geometrical.
Rotations are just Euclidean geometry; it should be a piece of cake. But
textbooks keep it abstract, only covering the algebraic aspects of the rep-
resentation theory while not explaining what the geometric counterpart of
that algebra is. One can readily check that the SU(2) matrices behave like
they should do. But somebody must have discovered this, based on insight,
and that geometrical insight is not explained in textbooks. When one tries
to figure it out oneself, one will have to pay an unreasonable price in amount
of time spent and frustration endured. The reason for this is that a radical
change in approach is required. The underlying idea is not difficult but it
can take the unwary completely off guard: one has to modify the definition
of a rotation as a function, by changing both its domain and range.

We are used to seeing the rotations as functions g from R? to R3, that
rotate vectors r € R? to other vectors g(r) = r’ € R*. But one can see a
rotation g also as a function on the group of rotations GG, that transforms
group elements g; € G into other group elements ¢°g; = g; € (. Instead
of operating with rotations on vectors coded in the form of 3 x 1 column
matrices (rotating vectors), one operates then with rotations on (other)
rotations coded in the form of 2 x 1 column matrices (rotating rotations).
The explicit mention of this prerequisite change in imagery is the only link
that is missing; the rest is straightforward.

vil



viii From. Spinors to Quantum Mechanics

One can derive the representation theory for the Lorentz group follow-
ing the same principles. This is more difficult because there a few more
quirky mathematical twists to it. But once these have been ironed out,
group theory will no longer appear as a concatenation of tedious and mys-
terious algebraic calculations. The algebraic quantities will have acquired
a recognizable geometrical meaning, just as one recognizes a circle in the
equation of a circle.

In learning quantum mechanics, one goes through the same feelings of
alienation and dismay as with learning group theory. Here is this intricate
set of rules with this very disorienting explanation for it. It just comes out of
the blue, and it looks ever so hard to make sense of it. Much as with group
theory, the reader is invited to just stick to the algebra without asking any
further questions as to what it means. Certain claims, for instance that a
particle cannot have a well-defined position and a well-defined momentum
at the same time, render the subject even more impervious. The Hungarian
philosopher Imre Lakatos summarized it wittily as follows: “When a particle
18 accelerated in Brookhaven, it is not in Brookhaven”. Even more puzzling
is that this is being derived from a mathematical formalism wherein the
momentum and position vectors p and r appear as very well-defined quan-
tities in the equations.

The narrative appears thus to run a bit as follows: these quantities do
not exist simultaneously, but by starting from an incorrect theory based on
the assumption that they do exist simultaneously, one can derive mathe-
matically another, correct theory wherein they do not exist simultaneously.
It just happens that there exists some magic that can be used to find the
right starting from the wrong. It is hard to understand how this could be.
Quantum mechanics is full of such mysteries.

What is proposed in this book is that the geometrical insights from
group representation theory can be very helpful in making sense of quantum
mechanics. It will take even some more surprising mathematical leaps, but
ultimately many mysterious aspects of quantum mechanics become clear
when one bases the reasoning on the true geometrical meaning of a spinor.
From the results I have obtained up to now, I am convinced that this method
is the only one that might permit us to eventually understand the whole
of quantum mechanics. I think that this book could function as a welcome
complement to anyone who wishes to obtain a better understanding of the
group representation theory and of quantum mechanics.

The contents of this book have all been rethought from scratch; it has
been a long and winding road. None of the results derived are novel; they



Preface ix

have all been well known within the traditional approach for a long time.
But the work cannot be assessed using a criterion of novelty of results.
What counts in this book is the additional insight that can be gained from
an alternative approach,

I would like to thank my employer, the Commissariat & 'Energie Atom-
ique et aux Energies Alternatives, and my directors Guillaume Petite,
Martine Soyer and Kees van der Beek for having offered me the opportunity
to carry out this work, and my colleagues for their moral support. Finally
I would like to thank Sébastien Ceste for his help with the figures.

Palaiseau,
Gerrit Coddens August 2011
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