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Preface

This book intends to provide fundamental knowledge for engineers and com-
puter scientists to get into the topic of distributed source coding, and is tar-
geted at senior undergraduate or first-year graduate students. It should also be
accessible for engineers with a basic knowledge of calculus and applied proba-
bility. We have included short chapters on information theory, channel coding,
and approximate inference in the appendix. The goal is to make the content as
self-contained as possible.

Excluding the appendix, the book is divided into three parts. First-time
readers who would like to get into applications quickly should work through
Chapters 1, 2, 3, 5, and 7, and then go straight to Part III, the application
chapters. Chapters 4 and 6 are more advanced and may require more math
maturity from readers.

Distributed source coding is an active research area and the authors have not
been able to cover every aspect of it. We have included materials that are geared
more toward our own research interests. However, we have striven to include
the most interesting applications in this book.
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Introduction

Imagine a dense sensor network consisting of many tiny sensors deployed for
information gathering. Readings from neighboring sensors will often be highly
correlated. This correlation can be exploited to significantly reduce the amount
of information that each sensor needs to send to the base station, thus reduc-
ing power consumption and prolonging the life of the nodes and the network.
The obvious way of exploiting correlation is to enable neighboring sensors to
exchange data with one another. However, communication among sensors is
usually undesirable as it increases the complexity of the sensors, which in turn
leads to additional cost and power consumption. How then is it possible to
avoid information exchange among sensors but still be able to exploit the sta-
tistical dependency of the readings in different sensor nodes? The solution lies
in distributed source coding.

Distributed source coding (DSC) enables correlation to be exploited effi-
ciently without the need for communications among sensors. Moreover, in
some specific cases it does not incur any loss compared to the case when the
sensors communicate.

DSC has been receiving significant attention since the beginning of the
21st century from academics and industrial researchers in different fields of
electrical and computer engineering, and mathematical and computer science.
Indeed, special sessions and tutorials dedicated to DSC are given at major
communications, signal processing, multimedia, and computer engineering
conferences. This is no wonder as DSC has potential applications ranging from
wireless sensor networks, ad-hoc networks, surveillance networks, to robust
low-complexity video coding, stereo/multiview video coding, high-definition
television, and hyper-spectral and multi-spectral imaging. This book is
intended to act as a guidebook for engineers and researchers to grasp the basic
concepts quickly in order to understand and contribute to this exciting field
and apply the emerging applications.

Distributed Source Coding: Theory and Practice, First Edition. Shuang Wang, Yong Fang, and Samuel Cheng.
© 2017 John Wiley & Sons Ltd. Published 2017 by john Wiley & Sons Ltd.
Companion Website: www.wiley.com/go/cheng/dsctheoryandpractice



2| Distributed Source Coding

1.1  What is Distributed Source Coding?

DSC deals with the source coding or compression of correlated sources. The
adjective distributed stresses that the compression occurs in a distributed or
noncentralized fashion. We can, for example, assume that the sources to be
compressed are distributed across different nodes in a network. The task is to
compress these sources and communicate compressed streams to a decoder
for joint decompression. The basis of DSC is that the compressions take place
independently, that is, the nodes do not exchange their information, whereas
decompression is joint.

This isillustrated in Figure 1.1 for the simple case of two nodes. Each node has
access only to its source, and does not have information about sources present
at other nodes. Therefore, “distributed” in this context refers to separate com-
pression at each node. Note that if decompression were also separate for each of
the sources, then the problem would boil down to multiple conventional com-
pressions. Throughout the book, distributed compression will always refer to
separate encoding and joint decoding, whereas joint compression will refer to
joint encoding and joint decoding, if not stated otherwise.

The search of achievable rates of DSC is a major information-theoretical
problem and lies in the framework of network information theory, a branch
of information theory that tries to find the compression and communication
limits of a network of nodes. In the case of discrete sources and perfect recon-
struction at the decoder, DSC extends Shannon's Source Coding Theorem, in
information theory, from the point-to-point to multipoint scenario. This is
referred to as lossless DCS. When we allow for some distortion in reconstruc-
tion, the DSC problem becomes a rate-distortion problem and is referred to as
lossy DSC.

1.2 Historical Overview and Background

DSC started as an information-theoretical problem in the seminal 1973 paper
of Slepian and Wolf [1]. Slepian and Wolf considered lossless separate com-
pression of two discrete sources, and showed that roughly speaking there is no

X I | Figure 1.1 DSC concept with
= » Encoder -
\ | Ry ‘ two separate encoders who do
not talk to each other and one
— L _\ Jjointdecoder. X and Y are
1__10"" decoder | *'[ Y) discrete, correlated sources; R,

and R, are compression rates.

>

- R
Ty 7’ El‘li:uder ; =F__



1 Introduction

performance loss compared to joint compression as long as joint decompres-
sion is performed.

This remarkable result triggered significant information-theoretical research
resulting in solutions — in the form of achievable rate regions — for more com-
plicated lossless setups. In 1976, Wyner and Ziv [2] considered a lossy version,
with a distortion constraint, of a special case of the Slepian—Wolf (SW) prob-
lem, where one source is available at the decoder as side information. Wyner
and Ziv showed that for a particular correlation where source and side infor-
mation are jointly Gaussian, there is no performance loss due to the absence
of side information at the encoder. The lossy case of the generalized SW setup,
known as multiterminal (MT) source coding, was introduced by Berger and
Tung in 1977 3, 4].

A possible realization of DSC via the use of conventional linear channel codes
to approach the SW bound was known as early as 1973, but due to the lack of
any potential application of DSC, work on code designs, that is, how to code the
sources to approach given bounds, started only at the end of the last century.
The first practical design was reported in 1999 [5], followed by many improved
solutions. One key insight of these designs is that conventional channel coding
can be used for compression. Indeed, correlation between the sources is seen
as a virtual communication channel, and as long as this virtual channel can
be modeled by some standard communication channel, for example Gaussian,
channel codes can be effectively employed. Capacity-approaching designs [6]
based on quantization followed by advanced channel coding, for example with
turbo codes [7] and low-density parity-check (LDPC) codes [8], come very close
to the bounds for two jointly Gaussian sources.

1.3 Potential and Applications

The launch of wireless sensor networks (WSNs) ignited practical DSC consider-
ations in the early years of this century since WSNs naturally call for distributed
processing. Closely located sensors are expected to have correlated measure-
ments; thus in theory the DSC setup fulfills the requirement of power-efficient
compression for distributed sensor networks. However, many practical prob-
lems remain to be solved before DSC is used in mainstream commercial net-
works. The challenges include the complex correlation structure of real signals,
nonGaussian sources, mandatory long codeword lengths, and the complexity
of current designs.

Though WSN triggered renewed interest in DSC, another application has
emerged: low-complexity video, where the DSC paradigm is used to avoid
computationally expensive temporal prediction loop in video encoding.
Indeed, loosely speaking, a conventional video encoder needs to find the best
matching block to the current one by examining all possible candidates, for

3



