
SOIL PROPERTIES AND THEIR CORRELATIONS

SECOND EDITION

MICHAEL CARTER STEPHEN P. BENTLEY

WILEY

SOIL PROPERTIES AND THEIR CORRELATIONS

SECOND EDITION

Michael Carter

Geotechnical Consultant (Retired), UK

Stephen P. Bentley Cardiff University, UK

This edition first published 2016 © 2016 John Wiley & Sons, Ltd

First Edition published in 1991

Registered Office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Names: Carter, Michael, author. | Bentley, Stephen P., author.

Title: Soil properties and their correlations / Michael Carter and Stephen P. Bentley, Cardiff University, UK.

Description: Second edition. | Chichester, West Sussex, United Kingdom: John Wiley & Sons, Inc., 2016. | Includes bibliographical references and index.

Identifiers: LCCN 2016013755 (print) | LCCN 2016014304 (ebook) | ISBN 9781119130871 (cloth) | ISBN 9781119130901 (pdf) | ISBN 9781119130895 (epub)

Subjects: LCSH: Soil mechanics.

Classification: LCC TA710 .B4285 2016 (print) | LCC TA710 (ebook) | DDC 624.1/5136–dc23 LC record available at http://lccn.loc.gov/2016013755

A catalogue record for this book is available from the British Library.

Set in 10/12pt Times by SPi Global, Pondicherry, India Printed and bound in Malaysia by Vivar Printing Sdn Bhd

Preface

The aims of this book are to provide a summary and discussion of commonly used soil engineering properties and to give correlations of various engineering properties.

The book includes:

- · a compendium of published correlations;
- discussions of the reliability, accuracy and usefulness of the various correlations:
- practical advice on how soil properties are used in the assessment and design of geotechnical problems, including basic concepts, and limitations on their use that need to be considered; and
- descriptions of the measurement of soil properties, and how results are affected by the method of measurement and the expertise of technicians carrying out the testing.

A consideration in describing the various properties has been an awareness by the authors that many geotechnical engineers and engineering geologists have little, if any, hands-on experience of laboratory testing, and are often unaware of the procedures used to obtain the various soil properties and of the effects of poor or inappropriate practice.

The properties are also described in relation to their use in geotechnical analysis, in a way that we hope will give students and younger engineers an in-depth appreciation of the appropriate use of each property and the pitfalls to avoid, and should also provide a useful reminder to more experienced professionals.

Many soil correlations were established in the early decades of soil mechanics, with there being no need to repeat the work once correlations had been established and verified by sufficient researchers. As a consequence, the correlations given in this book span a wide range of time, a few as far back as the 1930s, but we have also presented more recent work where this adds useful information. However, our intention in selecting correlations is to present those that will be of wide practical application, and the book is not intended as a research review. To aid their use in spreadsheet calculations, we have derived mathematical expressions to fit many of the correlations that were originally given only graphically. We have also tried to keep the work independent of national design codes, but it inevitably contains references to practices that are more prevalent in the English-speaking world. Where references are made to classification systems and associated codes we have, where possible, included references to both UK and US practice.

We envisage and recommend that correlations be used in two ways: firstly, to obtain values of a property that has not been measured; and secondly, to provide additional values where some direct measurements of the property have been made. In the first case, where no values of a particular property have been directly measured, the values obtained from correlations should be viewed with caution and treated as preliminary, especially where the property value is critical to the predicted performance of a design. Where correlations are used in combination with direct measurements to provide supplementary values, the accuracy and reliability of the correlations can usually be verified, fine-tuning the correlation if necessary, which may allow the values obtained by correlation to be viewed with more confidence.

While every care has been taken in the preparation of this book, with the very large amount of information that has been assembled it is possible that some errors have occurred; users should satisfy themselves that the information presented is correct. The authors can take no responsibility for consequences resulting from any errors in the book. The views expressed about the reliability and accuracy of correlations, typical values and other published information are based on the authors' own experience and may not accord with those of other geotechnical specialists.

Acknowledgements

In creating a compendium of published correlations, we had to seek permission from many authors around the globe; for her role in this important and painstaking task, the authors would like to thank Carol Clark. Bringing together such a large number of disparate items of information from many sources also involved a great deal of checking, and our thanks go to ex-colleagues Jason Williams and Max Lundie for their checking of some of the work, and especially to Mark Campbell who read through the entire script, noting errors and giving many helpful suggestions.

List of Symbols

Symbol	Name of variable	Typical units (SI)*
α	A scaling factor for estimating footing settlements from plate bearing test results.	D
α	A factor for estimating values of coefficient of volume compressibility from static cone test results.	D
α	Adhesion factor, for pile calculations.	D
α	A factor used to estimate the pull-out resistance of a soil reinforcement grid.	D
Δp	A distance above or below the A-line on a standard plasticity chart.	%
θ	Angle of a plane, from the direction of maximum principle stress, on which stresses act.	Degrees
μ	Viscosity of permeant for general seepage calculations.	kN.s/m ²
ν	Poisson's ratio.	D
π	Ratio of the circumference of a circle to its diameter (\approx 3.14159).	D
ρ	Settlement.	m, mm
σ	Direct stress.	kPa (kN/m²)
σ'	Effective direct stress.	kPa (kN/m²)

σ_1 , σ_2 , σ_3	Maximum, intermediate and minimum	kPa (kN/m²)
	principal stresses.	
σ_n	Effective earth pressure, used in soil nail calculations.	kPa (kN/m²)
σ_{v}, σ'_{v}	Vertical stress, or overburden pressure, in total and effective stress terms,	kPa (kN/m²)
	respectively.	
τ	Shear stress.	kPa (kN/m²)
Y	Bulk density of soil.	kN/m ³
7,	Dry density of soil.	kN/m ³
γ_{dmax}	Maximum dry density, for relative density calculations.	kN/m³
γ_{dmin}	Minimum dry density, for relative density calculations.	kN/m³
Y_p	Density of permeant for general seepage equation.	kN/m ⁴
**	Submerged density of soil.	kN/m³
Y sub	Density of water.	kN/m³
φ	Angle of shearing resistance (general,	Degrees
Ψ	or in total stress terms).	Degrees
φ'	Effective stress angle of shearing	Degrees
	resistance.	
φ_d	Drained angle of shearing resistance.	Degrees
φ_r	Residual angle of shearing resistance	Degrees
+ P	(general).	
а	Air voids content of soil.	%
а	Component of influence factor I_c for	D
	estimating settlements of footings on sands.	
A	Area (nominal) of soil water flow.	m^2
A	A correction factor for rod energy ratio	D
4.8	in the standard penetration test.	D
A	Percentage passing a 2.4 mm sieve, used	%
Λ	in the calculation of suitability index.	70
A	3	D
A	A constant used in the estimation of	D
Ä	swelling potential from plasticity index.	D
A_c	Activity value (of a clay).	D
A_{p}	End area of penetration cone in a	mm^2
	Istandard penetration test.	2
A_s	End area of penetration cone in a	mm ²
	dynamic probe.	

a_{v}	Coefficient of compressibility. (See also	m ² /MN
b	m_v , coefficient of volume compressibility.) Component of influence factor I_c for estimating settlements of footings on sands.	D
В	Footing width.	m
В	A constant used in the estimation of swelling potential from plasticity index.	D
C	Shape factor in general seepage calculations.	D
C	Cohesion.	kPa (kN/m²)
C	Percentage finer than 0.002 mm, used in the calculation of activity for a clay.	D
c'	Effective stress cohesion.	kPa (kN/m²)
C_{I}	Constant used in Hazen's formula to estimate the coefficient of permeability.	D
CBR	California Bearing Ratio.	%
C_c	Coefficient of curvature (coefficient of grading).	D
C_c , C_r	Compression index, recompression index, respectively.	D
C	Drained cohesion.	kPa (kN/m²)
$c_d \\ CI$	Consistency index.	%
C_N	Correction factor for overburden pressure, applied to SPT <i>N</i> -values.	D
C_u C_v C_a $C_{\alpha c}$, C'	Undrained cohesion, shear strength. Coefficient of uniformity.	kPa (kN/m²) D
C	Coefficient of consolidation.	cm ² /s, m ² /year
Č	Secondary compression index.	$(\log_{10} \text{time})^{-1}$
$C_{\alpha \nu}^{a}, C'$	Modified secondary compression index (sometimes referred to simply as the secondary compression index).	$(\log_{10}^{10} \text{time})^{-1}$
d	Maximum length of drainage path in consolidation calculations.	m
D	Depth of foundation (when calculating allowable bearing pressures on sands).	m
D_{10}	The 10% particle size, also called the effective size.	mm (or μ m)
D_{30}, D_{60}	The 30% and 60% particle sizes, respectively.	mm (or μ m)

D_n	The particle size at which $n\%$ of the	mm (or µm)
D_r D_s	material is finer. See also D_{10} , D_{30} , D_{60} . Relative density (of granular soils). An effective particle size for permeability	D mm
e e	estimates, usually taken as D_{10} . Voids ratio. The natural number, approximately	D D
E	2.718. Young's modulus (also called the elastic modulus).	kPa, MPa
e_1, e_2	Initial and final voids ratios in consolidation testing.	D
E_d	Deformation modulus (also called the constrained modulus).	kPa, MPa
e_{max}	Maximum voids ratio, for relative density calculations.	D
e_{min}	Minimum voids ratio, for relative density calculations.	D
ER_r	Rod energy ratio in standard penetration test.	D
F	The percentage passing the $75\mu m$ sieve, used in the calculation of AASHTO	%
$f_{p} f_{s}, f_{t}$	classification group index. Shape, layer thicknes and time factors, respectively, for estimating settlements of footings on sands.	D
F_p	Drop distance of monkey (falling hammer)	mm
F_s	in a dynamic probe. Drop distance of monkey (falling hammer) in a standard penetration test.	mm
G	Shear modulus.	kPa, MPa
G_{s}	Specific gravity of soil solids	D
h^{s}	Thickness of specimen in consolidation	mm
	testing.	
Н	Thickness of a compressible layer in consolidation testing.	m
i	Hydraulic gradient in soil water flow.	D
I_c	Influence factor for estimation of	D
	settlements of footings on sands.	

I_r	Rigidity index, used in rate-of- settlement estimates based on static	D
	piezocone test results.	
I_r	Swell index, used in the estimation of swelling pressure.	D
k	Coefficient of permeability.	m/s, m/year
K	A constant used in the estimation of	D
**	swelling potential from plasticity index.	-
K_{α}	Coefficient of earth pressure at rest.	D
K_d^0	Depth factor for allowable bearing	D
d	pressures on sands.	
K_{i}	Earth pressure coefficient use in driven	D
3	pile calculations.	
L	Footing length.	m
LI	Liquidity index.	%
LL	Liquid limit.	%
m	Moisture (water) content of soil.	%
M_{p}	Mass of monkey (falling hammer) in a	kg
	dynamic probe.	
M_s	Mass of monkey (falling hammer) in a	kg
	standard penetration test.	
$m_{_{y}}$	Coefficient of volume compressibility.	m ² /MN
	(See also a_v , coefficient of compressibility.)	
n	Porosity of soil.	D
n	A factor used to estimate undrained	D
	shear strength from consistency index	
	or liquidity index.	
N	SPT N-value; blows of standard hammer	Blows
	to drive the SPT sampler or cone	
3.7	300 mm.	Di
$N_{_1}$	SPT N-value corrected for overburden	Blows
λ7	pressure.	DI
$N_{_{1(60)}}$	SPT N-value corrected for overburden	Blows
	pressure and to a rod energy ratio of 60%.	
N_{60}	SPT <i>N</i> -value corrected for rod energy	Blows
7 4 60	ratio, ER_r (the "60" refers to	DIOWS
	standardisation to 60% rod energy.)	
N _{corrected}	SPT <i>N</i> -value corrected for silts and fine	Blows
corrected	sands below the groundwater table.	2.0113
	O THE MAN THE PARTY OF THE PART	

$N_{_k}$	A factor used in the estimation of undrained shear strength from static	D
	cone tip resistance.	
O_{40},O_{80}	Pore diameters at which 40% and 80% of the pores are finer	$mm,\mu m$
OCR	Overconsolidation ratio.	D
p	Previous maximum overburden pressure,	D
P	used in estimating settlements of	-
	footings on sands.	
p_{1}, p_{2}	Initial and final pressures used in a stage	kPa (kN/m²)
P P 2	of consolidation testing.	
PI	Plasticity index.	%
PL	Plastic limit.	%
PM	Plasticity modulus.	%
P_{p}	Penetration for each blow count in a	mm
p	dynamic probe.	
P_s	Penetration for each blow count in a	mm
8	standard penetration test.	
q	Quantity of flow of water through soil	m³/s, m³/year
3.8	per unit time.	
q	Bearing pressure.	kPa (kN/m ²)
q_a	Allowable bearing pressure.	MPa (MN/m²)
\bar{q}_c	Measured cone resistance (pressure) in	kPa (kN/m²)
1.0	static cone tests.	on: #
q_{u}	Ultimate bearing capacity.	kPa (kN/m²)
R	Component of influence factor f_i for	D
	estimating settlements of footings on	
	sands.	
S	Degree of saturation.	%
S	Swelling potential.	%
S, S_{μ}	Undrained shear strength.	kPa (kN/m ²)
S_{i}	Sensitivity	D
SL	Shrinkage limit.	%
t	Time, used in calculations or rates	s, years
	of consolidation and secondary	
	compression.	
t_{1}, t_{2}	Start and end times for secondary	s, years
	compression calculations.	
T_v	Basic time factor, used in calculations or	D
	rates of consolidation.	

\mathcal{U}	Pore water pressure.	kPa (kN/m²)
U	Degree of consolidation.	D
V	Nominal velocity of flow of water through soil.	m/s, m/year
V_I	True velocity of flow of water through soil.	m/s, m/year
$W_{_{LW}}$	Weighted liquid limit, used in the estimation of swelling potential.	%
$W_{_{\scriptscriptstyle W}}$	Weight of water (in the model soil sample).	g
Y	Rate of frost heave.	mm/day

^{*}D=dimensionless; % values are also essentially dimensionless.

List of Property Values and Correlations in the Tables and Figures

	p	Index	es	Der	nsity		Com	pressi	ibility	Stre	ngth		Spec	ialised			Pro	be tes	ting
Table	Grading	Moisture content	Plasticity/ consistency limits	Density	Relative density	Permeability	Total settlement (m _v , C _c and settlement of sands)	Rate of settlement (c _v)	Coefficients of secondary compression	Shear strength	California Bearing Ratio	Shrinkage and swelling characteristics	Frost susceptibility	Susceptibility to combustion	Stresses at soil-structure interfaces	Soil classification	Standard penetration test	Dynamic cone tests	Clatic cond tasts
3.1				1															
3.2				1												1			
3.3				1												1			
3.4					1												1	1	
3.5		-				19											4		
3.6					10												1	-	
3.7		7															4	4.4	
4.1						1						- 6							
5.1							1								-	1			
5.2							1												
5.3								1								/			
5.4		-					1		V										H
5.5			-				-	_	· ·							v			
										4	-	-				4			-
6.1														AT .		4			
6.2			4.			32 31				4		1							
6.3										4					-	4			
6.4		-	100		4					1						V			-
6.5		-								4						4		-	-
7.1											1								
7.2			~			- 1					√.					1			
8.1								5.	-			1				-			-
8.2			1		-														-
8.3									-			1							-
8.4			1					_	-		-	1							H
8.5			1						-		-			-			1 5		H
8.6	1		4			-					-	4							
8.7	1		1						-	_	-	1							
9.1	1	LU	1										4						H
9.2				-									1			V			
11_1						- 1		-							1	V			
11.2															1	1			
A1						177													
A2																4			
A3										4						1			
A4			-													1			
A5						14										./		100	
A6			12.5		h d											1			
A7		-			32	-													
A8																1			

	p	Index roperti	es	Der	nsity		Com	pressi	bility	Stre	ngth		Spec	alised			Pro	be tes	ting
Figure	Grading	Moisture content	Plasticity/consistency limits	Density	Relative density	Permeability	Total settlement (m _v , C _c and settlement of sands)	Rate of settlement (c _v)	Coefficients of secondary compression	Shear strength	California Bearing Ratio	Shrinkage and swelling characteristics	Frost susceptibility	Susceptibility to combustion	Stresses at soil-structure interfaces	Soil classification	Standard penetration test	Dynamic cone tests	Statis soon tasts
1.13										1									
2.1	4															1			
2.2	4																		
2.4			1																
2.5			1													4			
3.1				1															
3.2		1		1															
3.4		1	~	1											141.0				
3.5		V-		1				Ī											
3.6			177														1		
3.7					1														,
3.8																	1		
4.1						~										1			
4.2	1		1			1													
5.3			1				1				Q.52************************************						1		
5.4							7							150		-			
5.5							1												
5.6								1											
5.7			1					1											
5.9		1						·	1										
5.10		~							1										
5.11					111		1												
							1					-					1	M (112)	
5.12							1		-		-						-		
5.13							1										1		
5.14							./	-					_		-		1		
5.15	18		-2				4	1		- 0									,
6.4			4			-		-		1									
6.5			1							4									
6.6	10111111		V	-	-					1									H
6.7			4	-				_	-	4	-								
6.8			1							✓									
6.9					1111					4		-					1		
6.10			V		-					1							1		
6.11			4				-			~									
6.12				1	1					1						✓.			
6.13					1					4							4		
6.14					1					1									
7.1		1	1								1								
7.2		1									1								

		Index	es.	Der	isity		Com	pressi	bility	Stre	ngth		Spec	alised	I		Pro	be tes	ting
Figure	Grading	Moisture content	Plasticity/consistency limits	Density	Relative density	Permeability	Total settlement (m _v , C _c and settlement of sands)	Rate of settlement (c _v)	Coefficients of secondary compression	Shear strength	California Bearing Ratio	Shrinkage and swelling characteristics	Frost susceptibility	Susceptibility to combustion	Stresses at soil-structure interfaces	Soil classification	Standard penetration test	Dynamic cone tests	Static cone tests
7.4			1	4							4								
7.5		1		1							1								
7.6							J.J.C.				1					~			
7.7											1					~			
7.8					N.	31,1					1								
8.1			1									~							
8.2	1		1									1							
8.4	1		1									1							
8.5			4									~							
9.3	4												1						
9.4	2												1						
9.5	V.												1			~	Jul.		
10.1														1					
11.1										~					~				
11.2										4					Ý		1.2		
11.3			√.												1				
11.4			V												2				
A1			4													1			
A2			2													~			
B8																1			1

此为试读,需要完整PDF请访问: www.ertongbook.com