
Statistical Modeling and Machine Learning for Molecular Biology

Alan M. Moses

Statistical Modeling and Machine Learning for Molecular Biology

Alan M. Moses

University of Toronto, Canada

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed by CPI on sustainably sourced paper Version Date: 20160930

International Standard Book Number-13: 978-1-4822-5859-2 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Moses, Alan M., author.

Title: Statistical modeling and machine learning for molecular biology / Alan M.

Moses.

Description: Boca Raton: CRC Press, 2016. | Includes bibliographical references and index.

Identifiers: LCCN 2016028358 | ISBN 9781482258592 (hardback : alk. paper) | ISBN 9781482258615 (e-book) | ISBN 9781482258622 (e-book) | ISBN

9781482258608 (e-book)

Subjects: LCSH: Molecular biology-Statistical methods. | Molecular

biology-Data processing.

Classification: LCC QH506 .M74 2016 | DDC 572.8-dc23 LC record available at https://lccn.loc.gov/2016028358

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Statistical Modeling and Machine Learning for Molecular Biology

CHAPMAN & HALL/CRC

Mathematical and Computational Biology Series

Aims and scope:

This series aims to capture new developments and summarize what is known over the entire spectrum of mathematical and computational biology and medicine. It seeks to encourage the integration of mathematical, statistical, and computational methods into biology by publishing a broad range of textbooks, reference works, and handbooks. The titles included in the series are meant to appeal to students, researchers, and professionals in the mathematical, statistical and computational sciences, fundamental biology and bioengineering, as well as interdisciplinary researchers involved in the field. The inclusion of concrete examples and applications, and programming techniques and examples, is highly encouraged.

Series Editors

N. F. Britton Department of Mathematical Sciences University of Bath

Xihong Lin Department of Biostatistics Harvard University

Nicola Mulder University of Cape Town South Africa

Maria Victoria Schneider

European Bioinformatics Institute

Mona Singh Department of Computer Science Princeton University

Anna Tramontano Department of Physics University of Rome La Sapienza

Proposals for the series should be submitted to one of the series editors above or directly to: CRC Press, Taylor & Francis Group

3 Park Square, Milton Park
Abingdon, Oxfordshire OX14 4RN
UK

此为试读,需要完整PDF请访问: www.ertongbook.com

Published Titles

An Introduction to Systems Biology: Design Principles of Biological Circuits Uri Alon

Glycome Informatics: Methods and Applications

Kiyoko F. Aoki-Kinoshita

Computational Systems Biology of Cancer

Emmanuel Barillot, Laurence Calzone, Philippe Hupé, Jean-Philippe Vert, and Andrei Zinovyev

Python for Bioinformatics

Sebastian Bassi

Quantitative Biology: From Molecular to Cellular Systems

Sebastian Bassi

Methods in Medical Informatics: Fundamentals of Healthcare Programming in Perl, Python, and Ruby Jules J. Berman

Computational Biology: A Statistical Mechanics Perspective

Ralf Blossey

Game-Theoretical Models in Biology Mark Broom and Jan Rychtář

Computational and Visualization Techniques for Structural Bioinformatics Using Chimera

Forbes J. Burkowski

Structural Bioinformatics: An Algorithmic Approach

Forbes J. Burkowski

Spatial Ecology

Stephen Cantrell, Chris Cosner, and Shigui Ruan

Cell Mechanics: From Single Scale-Based Models to Multiscale Modeling

Arnaud Chauvière, Luigi Preziosi, and Claude Verdier

Bayesian Phylogenetics: Methods, Algorithms, and Applications Ming-Hui Chen, Lynn Kuo, and Paul O. Lewis

Statistical Methods for QTL Mapping
Zehua Chen

Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems

Qiang Cui and Ivet Bahar

Kinetic Modelling in Systems BiologyOleg Demin and Igor Goryanin

Data Analysis Tools for DNA Microarrays Sorin Draghici

Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition

Sorin Drăghici

Computational Neuroscience: A Comprehensive Approach Jianfeng Feng

Biological Sequence Analysis Using the SeqAn C++ Library

Andreas Gogol-Döring and Knut Reinert

Gene Expression Studies Using Affymetrix Microarrays

Hinrich Göhlmann and Willem Talloen

Handbook of Hidden Markov Models in Bioinformatics

Martin Gollery

Meta-analysis and Combining Information in Genetics and Genomics Rudy Guerra and Darlene R. Goldstein

Differential Equations and Mathematical Biology, Second Edition

D.S. Jones, M.J. Plank, and B.D. Sleeman

Knowledge Discovery in Proteomics *Igor Jurisica and Dennis Wigle*

Introduction to Proteins: Structure, Function, and Motion

Amit Kessel and Nir Ben-Tal

RNA-seq Data Analysis: A Practical Approach

Eija Korpelainen, Jarno Tuimala, Panu Somervuo, Mikael Huss, and Garry Wong

Introduction to Mathematical Oncology Yang Kuang, John D. Nagy, and Steffen E. Eikenberry

Biological Computation *Ehud Lamm and Ron Unger*

Published Titles (continued)

Optimal Control Applied to Biological Models

Suzanne Lenhart and John T. Workman

Clustering in Bioinformatics and Drug Discovery

John D. MacCuish and Norah E. MacCuish

Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation

Horst Malchow, Sergei V. Petrovskii, and Ezio Venturino

Stochastic Dynamics for Systems Biology

Christian Mazza and Michel Benaim

Statistical Modeling and Machine Learning for Molecular Biology Alan M. Moses

Engineering Genetic Circuits
Chris J. Myers

Pattern Discovery in Bioinformatics: Theory & Algorithms

Laxmi Parida

Exactly Solvable Models of Biological Invasion

Sergei V. Petrovskii and Bai-Lian Li

Computational Hydrodynamics of Capsules and Biological Cells

C. Pozrikidis

Modeling and Simulation of Capsules and Biological Cells

C. Pozrikidis

Cancer Modelling and Simulation *Luigi Preziosi*

Introduction to Bio-Ontologies
Peter N. Robinson and Sebastian Bauer

Dynamics of Biological Systems *Michael Small*

Genome Annotation

Jung Soh, Paul M.K. Gordon, and Christoph W. Sensen

Niche Modeling: Predictions from Statistical Distributions

David Stockwell

Algorithms in Bioinformatics: A Practical Introduction

Wing-Kin Sung

Introduction to Bioinformatics

Anna Tramontano

The Ten Most Wanted Solutions in Protein Bioinformatics

Anna Tramontano

Combinatorial Pattern Matching Algorithms in Computational Biology Using Perl and R

Gabriel Valiente

Managing Your Biological Data with Python

Allegra Via, Kristian Rother, and Anna Tramontano

Cancer Systems Biology

Edwin Wang

Stochastic Modelling for Systems Biology, Second Edition Darren J. Wilkinson

Big Data Analysis for Bioinformatics and Biomedical Discoveries

Shui Qing Ye

Bioinformatics: A Practical Approach

Shui Qing Ye

Introduction to Computational Proteomics

Golan Yona

For my parents

Acknowledgments

First, I'd like to acknowledge the people who taught me statistics and computers. As with most of the people that will read this book, I took the required semester of statistics as an undergraduate. Little of what I learned proved useful for my scientific career. I came to statistics and computers late, although I learned some html during a high-school job at PCI Geomatics and tried (and failed) to write my first computer program as an undergraduate hoping to volunteer in John Reinitz's lab (then at Mount Sinai in New York). I finally did manage to write some programs as an undergraduate summer student, thanks to Tim Gardner (then a grad student in Marcelo Magnasco's lab), who first showed me PERL codes.

Most of what I learned was during my PhD with Michael Eisen (who reintroduced cluster analysis to molecular biologists with his classic paper in 1998) and postdoctoral work with Richard Durbin (who introduced probabilistic models from computational linguistics to molecular biologists, leading to such universal resources as Pfam, and wrote a classic bioinformatics textbook, to which I am greatly indebted). During my PhD and postdoctoral work, I learned a lot of what is found in this book from Derek Chiang, Audrey Gasch, Justin Fay, Hunter Fraser, Dan Pollard, David Carter, and Avril Coughlan. I was also very fortunate to take courses with Terry Speed, Mark van der Laan, and Michael Jordan while at UC Berkeley and to have sat in on Geoff Hinton's advanced machine learning lectures in Toronto in 2012 before he was whisked off to Google. Most recently, I've been learning from Quaid Morris, with whom I cotaught the course that inspired this book.

I'm also indebted to everyone who read this book and gave me feedback while I was working on it: Miranda Calderon, Drs. Gelila Tilahun, Muluye Liku, and Derek Chiang, my graduate students Mitchell Li Cheong Man, Gavin Douglas, and Alex Lu, as well as an anonymous reviewer.

xvi ■ Acknowledgments

Much of this book was written while I was on sabbatical in 2014–2015 at Michael Elowitz's lab at Caltech, so I need to acknowledge Michael's generosity to host me and also the University of Toronto for continuing the tradition of academic leave. Michael and Joe Markson introduced me to the ImmGen and single-cell sequence datasets that I used for many of the examples in this book.

Finally, to actually make this book (and the graduate course that inspired it) possible, I took advantage of countless freely available software, R packages, Octave, PERL, bioinformatics databases, *Wikipedia* articles and open-access publications, and supplementary data sets, many of which I have likely neglected to cite. I hereby acknowledge all of the people who make this material available and enable the progress of pedagogy.

Contents

ACKIIOV	viedgilients, xv	
Section	Overview	
Снартей	 Across Statistical Modeling and Machine Learning on a Shoestring 	3
1.1	ABOUT THIS BOOK	3
1.2	WHAT WILL THIS BOOK COVER?	4
	1.2.1 Clustering	4
	1.2.2 Regression	5
	1.2.3 Classification	6
1.3	ORGANIZATION OF THIS BOOK	6
1.4	WHY ARE THERE MATHEMATICAL CALCULATIONS IN THE BOOK?	8
1.5	WHAT WON'T THIS BOOK COVER?	11
1.6	WHY IS THIS A BOOK?	12
REF	erences and further reading	14
Снарты	R 2 Statistical Modeling	15
2.1	WHAT IS STATISTICAL MODELING?	15
2.2	PROBABILITY DISTRIBUTIONS ARE THE MODELS	18
2.3	AXIOMS OF PROBABILITY AND THEIR CONSEQUENCES: "RULES OF PROBABILITY"	23
2.4	HYPOTHESIS TESTING: WHAT YOU PROBABLY ALREADY KNOW ABOUT STATISTICS	26
		ix

此为试读,需要完整PDF请访问: www.ertongbook.com

	2.5	TESTS	WITH FEWER ASSUMPTIONS	30
		2.5.1	Wilcoxon Rank-Sum Test, Also Known As the Mann–Whitney <i>U</i> Test (or Simply the WMW Test)	30
		2.5.2	Kolmogorov-Smirnov Test (KS-Test)	31
	2.6	CENT	ral limit theorem	33
	2.7	EXAC	T TESTS AND GENE SET ENRICHMENT ANALYSIS	33
	2.8	PERM	IUTATION TESTS	36
	2.9	SOME	E POPULAR DISTRIBUTIONS	38
		2.9.1	The Uniform Distribution	38
		2.9.2	The <i>T</i> -Distribution	39
		2.9.3	The Exponential Distribution	39
		2.9.4	The Chi-Squared Distribution	39
		2.9.5	The Poisson Distribution	39
		2.9.6	The Bernoulli Distribution	40
		2.9.7	The Binomial Distribution	40
	EXER	RCISES		40
	REFE	RENCI	es and further reading	41
C	HAPTER	R 3 .	Multiple Testing	43
	3.1		BONFERRONI CORRECTION AND GENE SET CHMENT ANALYSIS	43
	3.2	MULT ANAL	TIPLE TESTING IN DIFFERENTIAL EXPRESSION LYSIS	46
	3.3	FALSE	E DISCOVERY RATE	48
	3.4	eQTL PROB	s: A VERY DIFFICULT MULTIPLE-TESTING BLEM	49
	EXE	RCISES		51
	REFE	RENCI	es and further reading	52
C	HAPTE	R 4 .	Parameter Estimation and Multivariate Statistics	53
	4.1	FITTIN	ng a model to data: objective	
		0 000 0 0 0	CTIONS AND PARAMETER ESTIMATION	53
	4.2	MAXI	imum likelihood estimation	54
	4.3	LIKEL	IHOOD FOR GAUSSIAN DATA	55

	4.4	HOW TO MAXIMIZE THE LIKELIHOOD ANALYTICALLY	56
	4.5	OTHER OBJECTIVE FUNCTIONS	60
	4.6	MULTIVARIATE STATISTICS	64
	4.7	MLES FOR MULTIVARIATE DISTRIBUTIONS	69
	4.8	HYPOTHESIS TESTING REVISITED: THE PROBLEMS WITH HIGH DIMENSIONS	77
	4.9	EXAMPLE OF LRT FOR THE MULTINOMIAL: GC CONTENT IN GENOMES	80
	EXER	CISES	83
	REFE	rences and further reading	83
E	CTION	Clustering	
ì	HAPTER	5 Distance-Based Clustering	87
	5.1	MULTIVARIATE DISTANCES FOR CLUSTERING	87
	5.2	AGGLOMERATIVE CLUSTERING	91
	5.2	CLUSTERING DNA AND PROTEIN SEQUENCES	95
	5.4	IS THE CLUSTERING RIGHT?	98
	5.5	K-MEANS CLUSTERING	100
	5.6	SO WHAT IS LEARNING ANYWAY?	106
	5.7	CHOOSING THE NUMBER OF CLUSTERS FOR K-MEANS	107
	5.8	K-MEDOIDS AND EXEMPLAR-BASED CLUSTERING	109
	5.9	GRAPH-BASED CLUSTERING: "DISTANCES" VERSUS	109
	5.9	"INTERACTIONS" OR "CONNECTIONS"	110
	5.10	CLUSTERING AS DIMENSIONALITY REDUCTION	113
		CISES	113
		rences and further reading	115
ì	HAPTER	6 Mixture Models and Hidden Variables	
		for Clustering and Beyond	117
	6.1	THE GAUSSIAN MIXTURE MODEL	118
	6.2	E-M UPDATES FOR THE MIXTURE OF GAUSSIANS	123

	6.3	DERIVING THE E-M ALGORITHM FOR THE MIXTURE OF GAUSSIANS	127
	6.4	GAUSSIAN MIXTURES IN PRACTICE AND THE CURSE OF DIMENSIONALITY	131
	6.5	CHOOSING THE NUMBER OF CLUSTERS USING THE AIC	131
	6.6	APPLICATIONS OF MIXTURE MODELS IN BIOINFORMATICS	133
	EXER	RCISES	141
	REFE	RENCES AND FURTHER READING	142
SE	CTION	III Regression	
Cı	HAPTER	7 • Univariate Regression	145
	7.1	SIMPLE LINEAR REGRESSION AS A PROBABILISTIC	
		MODEL	145
	7.2	DERIVING THE MLES FOR LINEAR REGRESSION	146
	7.3	HYPOTHESIS TESTING IN LINEAR REGRESSION	149
	7.4	LEAST SQUARES INTERPRETATION OF LINEAR REGRESSION	154
	7.5	APPLICATION OF LINEAR REGRESSION TO eQTLs	155
	7.6	FROM HYPOTHESIS TESTING TO STATISTICAL MODELING: PREDICTING PROTEIN LEVEL BASED ON mRNA LEVEL	157
	7.7		161
	7.8	GENERALIZED LINEAR MODELS	165
		RCISES	167
		ERENCES AND FURTHER READING	
	KEFE	RENCES AND FORTHER READING	167
C	HAPTER	R 8 Multiple Regression	169
	8.1	PREDICTING Y USING MULTIPLE Xs	169
	8.2	HYPOTHESIS TESTING IN MULTIPLE DIMENSIONS: PARTIAL CORRELATIONS	171

	8.3	EXAMPLE OF A HIGH-DIMENSIONAL MULTIPLE REGRESSION: REGRESSING GENE EXPRESSION LEVELS	
		ON TRANSCRIPTION FACTOR BINDING SITES	174
	8.4	AIC AND FEATURE SELECTION AND OVERFITTING	480
		IN MULTIPLE REGRESSION	179
		CISES	182
	REFE	rences and further reading	183
0			
Ci	HAPTER	 Regularization in Multiple Regression and Beyond 	185
	9.1	REGULARIZATION AND PENALIZED LIKELIHOOD	186
	9.2	DIFFERENCES BETWEEN THE EFFECTS OF <i>L</i> 1 AND <i>L</i> 2 PENALTIES ON CORRELATED FEATURES	189
	9.3	REGULARIZATION BEYOND SPARSITY: ENCOURAGING YOUR OWN MODEL STRUCTURE	190
	9.4	PENALIZED LIKELIHOOD AS MAXIMUM A POSTERIORI (MAP) ESTIMATION	192
	9.5	CHOOSING PRIOR DISTRIBUTIONS FOR PARAMETERS: HEAVY-TAILS IF YOU CAN	193
	EXER	CISES	197
	REFE	rences and further reading	199
SE	CTION	IV Classification	
Cı	HAPTER	10 • Linear Classification	203
	10.1	CLASSIFICATION BOUNDARIES AND LINEAR CLASSIFICATION	205
	10.2	PROBABILISTIC CLASSIFICATION MODELS	206
	10.3	LOGISTIC REGRESSION	208
	10.4	LINEAR DISCRIMINANT ANALYSIS (LDA) AND THE LOG LIKELIHOOD RATIO	210
	10.5	GENERATIVE AND DISCRIMINATIVE MODELS FOR CLASSIFICATION	214
	10.6	NAÏVE BAYES: GENERATIVE MAP CLASSIFICATION	215

xiv Contents

10.7	TRAINING NAÏVE BAYES CLASSIFIERS	221
10.8	NAÏVE BAYES AND DATA INTEGRATION	222
EXER	CISES	223
REFE	rnces and further reading	223
CHAPTER	11 Nonlinear Classification	225
11.1	TWO APPROACHES TO CHOOSE NONLINEAR	
	Boundaries: data-guided and multiple	
	SIMPLE UNITS	226
11.2	DISTANCE-BASED CLASSIFICATION WITH	
	k-nearest neighbors	228
in maren.	SVMs FOR NONLINEAR CLASSIFICATION	230
11.4	DECISION TREES	234
11.5	RANDOM FORESTS AND ENSEMBLE	
	CLASSIFIERS: THE WISDOM OF THE CROWD	236
11.6	MULTICLASS CLASSIFICATION	237
EXER	CISES	238
REFE	rences and further reading	239
CHAPTER	12 • Evaluating Classifiers	241
12.1	CLASSIFICATION PERFORMANCE STATISTICS IN THE	
	IDEAL CLASSIFICATION SETUP	241
12.2	MEASURES OF CLASSIFICATION PERFORMANCE	242
12.3	ROC CURVES AND PRECISION—RECALL PLOTS	245
12.4	EVALUATING CLASSIFIERS WHEN YOU	
	DON'T HAVE ENOUGH DATA	248
12.5	LEAVE-ONE-OUT CROSS-VALIDATION	251
12.6	BETTER CLASSIFICATION METHODS	
	VERSUS BETTER FEATURES	253
EXER	RCISES	254
REFE	rences and further reading	255

I

Overview

The first four chapters give necessary background. The first chapter is background to the book: what it covers and why I wrote it. The next three chapters are background material needed for the statistical modeling and machine learning methods covered in the later chapters. However, although I've presented that material as background, I believe that the review of modeling and statistics (in Chapters 2, 3 and 4) might be valuable to readers, whether or not they intend to go on to the later chapters.