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Preface

This second edition employs the same approach as the original
text and is based on the same underlying philosophy. It is intended
primarily for a sophomore or a junior level one-semester introductory
course in differential equations. Addressed to students who have com-
pleted a basic calculus sequence, it is not too difficult for a good student
who has completed two semesters of calculus. The level of mathemat-
ical sophistication is appropriate for average students whose interests
lie in mathematics, science, or engineering. It is also suitable for those
who expect to encounter differential 1‘uations in such diverse fields
as economics, biology, medicine, or demography.

Although theory is not slighted, the main emphasis is on appli-
cations. These are taken not only from the physical sciences but also
from the life sciences, the so<ial sciences, and geometry. A perusal of
the Table of Contents gives 4 fairly specific indication of the variety of
applications covered. Chapters 3 and 5 are devoted entirely ta appli-
cations; other chapters include applications whenever appropriate. Few
applications receive long, detailed treatment since time limitations in
most courses render such an approach impractical. Attention is focused
on those applications that are readily understood by students who do
not have specialized knowledge of the fields from which applications
are selected. More applications are included than can be covered in
the usual course. This permits flexibility and allows the instructor to
consider the interests, preparation, and mathematical maturity of the
students. :
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Various other options are available. Chapter 7 on the Laplace
transform and Chapter 10 on partial differential equations may be
omitted, treated lightly, or covered completely. Sections 4.8, 4.9, 4.11,
6.2, 9.2, and 9.7 through 9.10 are not essential to the main develop-
ment and may be omitted or given minor emphasis in a short course.

The main objective of the textbook is to present simply and clearly
the important concepts of the theory of differential equations and to
show how differential equations are used in mathematical models de-
scribing real-life situations. This is accomplished by using simple yet
modern terminology and notation, including an unusually large num-
ber of examples, and presenting extensive, carefully graded problem
lists. Numerous expositions illustrate the manner in which reasonable
physical assumptions lead to differential equations governing concrete
situations. The text emphasizes that the same mathematical model often
governs many seemingly unrelated physical situations.

The importance of numerical methods of solving differential
equations is stressed. Although the computer’s importance is empha-
sized, the material is developed without assuming that the student has
access to a high-speed computer. The basic objective of Chapter 9 is
to give the student an idea of what is important in numerical solutions
and to present a few simple numerical methods.

The existence and the uniqueness of solutions are considered,
with illustrations. This is accomplished without including the numerous.
proofs that would be essential in a more theoretical development. Stu-
dents are encouraged to seek properties of solutions of differential
equations without obtaining explicit solutions. Geometric and physical
interpretations are exploited in this direction.

Numerous references are given at the end of each chapter. These
furnish sources for additional proofs, more detailed theoretical ap-
proaches, and expanded treatments of applications.

This revision differs from the first edition in several respects. In
Section 2.4 an example is presented in which the function Q in the
differential equation y' + P(x) y = Q(x) is discontinuous at a point
x = a inside the interval under consideration. Section 2.7 includes
three graphs of direction fields obtained using computer graphics. These
graphs will give students an awareness of the manner in which a com-
puter, without actually solving a differential equation, can furnish in-
formation about properties of the solutions of the equation. Section
2.7 also includes several examples illustrating the Peano existence theo-
rem and the Picard uniqueness theorem.

Chapter 4 on Linear Differential Equations has been expanded
considerably. The Wronskian in Section 4.3 is given more prominence,
the topic Reduction of Order is treated separately in Section 4.5, and
in Section 4.6 Homogeneous Second-Order Linear Differential Equa-
tions and the Euler Identity receive more detailed treatments. The
chapter contains two new sections, Section 4.10 on Higher-Order Lin-
ear Equations and Section 4.11 on the Euler Equation.
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Section 6.2 on Plane Autonomous Systems, Critical Points, and
Stability is new. In courses where time permits. this section wiil give
students a better understanding of the qualltatlve aspects of the theory
of differential equations.

In Section 8.3 the Method of Frobenius has been expanded slightly.
Chapter 9 on Numerical Methods now contains separate sections on
Runge-Kutta methods and the Classical Runge-Kutta Method. Section
10.7 includes two illustrations based on computer graphic treatments
of the Heat Equation.

In addition to these specific changes and additions, a number of
general modifications have been incorporated. To render the overall
presentation more instructive, interesting, and challenging, numerous
illustrations, drawings, and problems have been added. The exposition
has been modified in various places in an effort to achieve greater
clarity. '

It is our hope that this new edition will give students an under-
standing and appreciation of the important role that differential equa-
tions play in modern life.

I am indebted to Professor Mahlon F. Stilwell and Marion G.
Tierney for their careful reading of the manuscript and their many
highly valuable suggestions.

I also express my appreciation to Raeia Maes for coordinating
the production of this text.

Finally, I am deeply grateful to Allyn and Bacon editors Gary
Folven and Carol Nolan-Fish. Their constant encouragement and as-
sistance have been invaluable.

J.A.T.
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-Preliminary -
Concepts

Introduction

In the latter half of the seventeénth century, Newton and Leibniz
systematized the calculus into a unified body of mathematical knowiedge.
Their exploitation of the fact that differentiation and ihtegration are inverse
processes led to the development of the theory of differential equations
[abbreviated DE henceforth, for “differential equation(s)”]. Mathematicians
and scientists were quick to realize that many basic physicat laws were best -
expressed by equations involving not only the nnderly:ng?anablcs but also.
their derivatives or instantaneous. rates of chauge. Interest, in the theory and .
application of DE has persisted to the present day. Eﬂ'orts to rwolve various
theoretical questions concerning DE have resulted in the enrxchmem of
mathematical analysis, the study of infinite processes. Iﬂvestngators continue
to discover new applications of DE, not only in the pwsxeal sciences but also
in such diverse fields as biology, physialogy, medicine, statistics, sociology,
psychology, and economics. Both theoretical and applied ; DE areactwe fields .
of current research. :

Definition A differential equation is an equation mvolvmg unknown
functions and their derivatives. ; .

If the functions are real functions of one real variable, the derivatives -
occurring are ordinary derivatives, and the equation is called an ordinary DE.



Exampie 1.

ExampLE 2.

: . < P :
If the functions are rea! functions of more than one “real variable; the

derivatives occurring are partial derivatives, and the cquation is called a
particl DE. When we refer to an equation as a DE, we siall mean an ordinary .
DE. Until we state otherwise, we shall restrict ourselves to DE m%l\mg a.

single unknown function.
Drefisition By a solution of the DE

d d" d"v\

we mean a real function f, deneted by v = f(x), defined on a set § of real
numbers, where S is the union of nonoverlapping intervals such that

Fle FEOF 1) £7(%), . . s f"(x)) =0

for all x i S.

If x, is a left (right) endpoint of aninterval in 8, derivatives on the right-

(left) of f at x, are intended. Noti: The variables x and y need not appear in
(1.1); however, at ieast one derivative must appear if (1.1)is to be termed a DE.

The function defined by y = fix) = e’* = exp(2x) is a solution of the DE y -

2y = 0 on (— o0, +00), since 2e** = 2(e**) = 0 for all x. The function defined by -

y = g(x) = e** having domain [0, 1] is aiso a solution of y' — 2y = 0.

In many applications we seek a solution of a DE where the domain of -_ 4.

the solution is a specified interval. For example, if ¢t denotes time ina DE,a

solution is often sought on the interval 1 > 0. If no domain is specified, we seek -

a solution (or solutions) having the largest possible domain, consisting of one
or more intervals.

The function defined by y = \/T — x” isa sohajﬁoh;of the DE yy’ + x =0on(—=1, 1),
since ‘ Lo L
\/T ~ x2 (__/___::—Zx )+ x=0
25/ Yoo 2
for all x in (—1, 1). Note that y is undeﬁned on( oc, —1) U (1, 4 o0), and that y’ is
undefined at x = 4+l andat x = — L. :

Find solutions of the DE y' = x ™%

Solution: Since d/dx(—x"' + C) :x"’ Mot all x #0, then y = —x"' 4 C =
defines a family of solutions on § = (= oo 0) (0, + ), where C is an arhikary A

: s x X :
Find solutions of y’ = - . :

Jx2 =1 V9= x

Preliminary Concepts

-censtant. Thus, the DE has an infinite number of solutions, each having domain’S. 3'




ExampLE 5.

ExampLE 7.

Exm 10.

Solution: Since

X X

JE-1 -

%(\/xz—l+\/9-—xz+C)=

then *

o y=x¥1+./9-x*+C

 defines a family of solutions, each with domain S = (-3, —1) u (1, 3).

3\/?:.

2

Find solutions of y' =

Solution: Since

; i(x=/2+C)=3‘/; -
dx 2% ¢ :

then y = f(x) = x*? + C defines a family of solutions, each having domain § =
[0, + o). By f'(0) = 0 we mean the derivative on the right of f at x = 0.

.- The DE(dy/dx)* + x?y? + 1 = Ohas no real-valued solution, since the left member is

positive for all differenti®ble real functions of a real variable. This example shows us
that there is no guarantee that a given DE has even one solution.

The DE (dy/dx)? + y?> = 0 has the unique solution f with specified domain
(—o0, +00) where y = f(x) = 0; that is, the DE has one and only one solution. If a
solution g existed on (— o0, + c0) where g(x,) # 0 at some x = x,, the left member
of the DE would be positive for x = x,. Note that the solution of this DE involves
no arbitrary constants. .

Find solutions of y’ = x~ ! on (—c0, 0).

Solution: Since d/dx(In |x| + C) = x~! on (— o, 0), solutions are given by y =
In |x| + C.Since|x] = —x on(— oo, 0), the solutions are also givenby y = In(—x) +

.C. The DE has an infinite number of solutions, each having the specified domain

(— oo, 0). By In u we mean the natural, or Napierian, logarithm of u.

Definition The order of a differential equation is the order of the highest-
order derivative appearing in the equation.

The DE of Examples 1-8 are first-order equations.
The DE y” + xy' = 0is a second-order equat;on.

The DE y” — x* = 0is a third-order equation.

1.1 Introduction , % 3



Definition An ordinary DE is said to be linear if and only if it can be
written in the form

(Y™ £ a, )y + - 4 g, ()Y + a0y = f(x)

where f and the coefficients a,, a,; . . ., a, are continuous functions of x.
All other DE are called nonlinear. (NoTE: y™ denotes d"y/dx".)

e <
Thus a linear DE is linear in y and its derivatives.
Examece 11. The DE 3" + xy’ "‘-}:'X"y — ¢* = (s linear, since it is linear in y, y’, and y".
Exameie 12. The DE y” + cos y = 0 i§ nonlinear, since it is not linear in y.

Examete 13. The DE y" 4 y¥ + x = 0 is nonlinear, since y, the coefficient of y’, denotes an
unknown function of x instead of a specific function of x.

In Chapter 5 we will encounter the linear DE

d?i di : S

and the nonlinear DE

d*0

F+%sin0=0

In the first DE, which governs the flow of current in an electric circuit,
- L, R, and C are constants, i denotes the current in amperes, and E is the
voltage at time 1.

In the second DE, which governs the motion of a simple pendulum, g
and ! are constants and 6 denoics the angle between the pendulum rod and
the vertical. :

The first-order DE 3’ = cos x has a solution given by y = sin x, valid
for all x. It also has an infinite number of solutions given by y = sin x + C,
where C is an arbitrary constant. ) g A

The second-order DE y” = 6x has solutions given by y = x> +
C,x + (,, valid for all x, where C, and C, are arbitrary constants. These
solutions are found by integrating y” = 6x to obtain y' = 3x* + C,, and
then integrating a second time.

In general, the solution of an nth-order DE contains n arbitrary
constanis. The n constants are said to be essential if it is not possible to write
the sofution in a form involving fewer than n constants. For example, the
function given by Ae® ** appears to contain two essential arbitrary constants,

4 Preliminary Concepts



ExampLE 14.

ExampLe 15.

ExampLE 16.

but in fact contains only one. This is readily seen by writing

Ae®t* = AePe* = Ce* :
where Ae® is replaced by the single arbitrary constant C. (For a more complete
discussion of essential arbitrary constants see Reference 1.1.) We shall assume
that any constants appearing in a solution are essential unless we state
otherwise.

Definition By a general solution of an nth-order DE, we mean a solution
containing n essential arbitrary constants.

If every solution of a DE can be obtained by assigning particular values
to the narbitrary constants in a general solution, that general solution is called
a complete solution. A solution of the DE that cannot be obtained from a
general solution by assigning particular values to the arbitrary constants is
called a singular solution.

The term general solution is unsatisfactory since a general solution may
or may not be a complete solution. Some authors use the term “general
solution” only when treating linear DE. The reason for this will appear in
Chapter 4. More theoretical developments prefer to focus attention on
differential systems that include DE and to prove existence and uniqueness
theorems for such systems. (This approach will be discussed in Sections 1.2
and 2.7.)

The solution given by y = sin x + C is a general solution of the DE y’ = cos x. This
solution is also a complete solution, since two functions having a derivative given by
cos x can differ by at most a constant.

The solution given by y = Cx — C?, where C is an arbitrary constant, is a general
solution of the first-order DE (dy/dx)* — x dy/dx + y = 0. This is not a complete
solution, since the DE also has the singular solution given by y = x?/4. The singular
solution cannot be obtained from y = Cx — C? by assigning a particular value to C.

Definition Any solution of a DE that can be obtained from a general solu-

. tion by assigning values to the essential arbitrary constants is called a
- particular solution.

For example, by setting C = 0 in Example 14, we obtain the particular
solution given by y = sin x of the DE y’ = cos x.

Solutions of the DE y’ = 2x~3 are given by y = C — x~2, and the domain of each
solution is the set § = (— o0, 0) U (0, + o).

The following example illustrates a partial DE. (We shall consider
partial DE in Chapter 10.)

1.7 Introduction 5



Exampie 17. Show that the function f defined by z = f(x, 1) = (x — 4t)2 is asoluuon of the partial

DE
. 0%z
ot? ox?
Solution: From
0z 0%z
e e Bl o e 2
0x o t)’ ox?
oz 0%z
e S B0 s 32
ot b ) ot

we obtain 32 = 16(2), true for all x and all . The domain of f is the set of all ordered
pairs (x, t) of real numbers.

A special type of DE is classified according to degree.

Definition If the DE

Fix, Byl e O (1.2)

can be expressed as a polynomial in y, y', y”, ..., y", the exponent of the
highest-order derivative is called the degree of the DE.

Exampies. . The differential equations
Y'=x2=0 y'—yt4x=0 p'=3y+2p—e*=0

2 2
35 08z 0%

x*y +xy + x¥ =1 and. 57+6_3:2=0

are first-degree equations. The DE
(@)~ xy + y=10 and (y) —xy> =0 :

o are second-degree equétions The DE y” =%/ + y is also a second-degree
equation since it.can be written in the form (y")* =y = 1 =0, The DE y” =

In y=0and y —cosy =0 hwe no degree since neither can be written in the
form (1.2).

We make the ﬁsual asksﬁmption that the DE

L Py YL Y y"")== s e (12)

“can be sotwthfdt M&gﬁeﬂ-m’der denvat;ve ap,peariﬁg, that is, that it can be
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