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Preface

Seven years have now passed since I wrote the first edition of this book. My
aim is still not to provide a full survey of the field, but instead a practical
introduction to writing fluid solvers. I have tried to distill my knowledge of
the research field and my experience in the visual effects industry to hit on
what I think now are the most important points, giving enough motivation
that hopefully it is clear how and why things work. I hope nobody will be
upset if I missed their research: I make no claim to properly overview the
field, but am just carving out a path I believe is useful.

Compared to the first edition there is plenty of new material, for ex-
ample new chapters on level sets and vortex methods. The ordering of
topics has changed to make more sense when read the first time through,
and I have upgraded several parts according to my experience. [ still as-
sume the reader has no background in fluid dynamics, and not much in the
way of numerical methods, but a comfort with vector calculus, ordinary
differential equations, and the standard graphics mix of linear algebra and
geometry is necessary.

Previously I thanked Ron Fedkiw, who introduced me to graphics and
fluids; my coauthors and students (many more now!); Marcus Nordenstam
with whom I wrote several important fluid solvers including Naiad and now
Bifrost; Jim Hourihan, Matthia Miiller-Fischer, Eran Guendelman, and
Alice Peters (of A K Peters) who all helped in the process of turning ideas
and enthusiasm into the first edition. To these I would also add Wei-Pai
Tang who got me started in numerical methods; the University of British
Columbia Computer Science Department; Michael Nielsen; and the staff
at Taylor and Francis who have made this second edition possible. Above
all T would like to thank my family, especially my wife, for supporting me
through the late nights, stress, one-sided conversations, and all the rest
that accompany writing a book.

Robert Bridson
April 2015
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The Basics
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The Equations of Fluids

Fluids surround us, from the air we breathe to the oceans covering two
thirds of the Earth, and are at the heart of some of the most beautiful and
impressive phenomena we know. From water splashing, to fire and smoke
swirling, fluids have become an important part of computer graphics. This
book aims to cover the basics of simulating these effects for animation. So
let’s jump right in with the fundamental equations governing their motion.
Most fluid flow of interest in animation is governed by the famous in-
compressible Navier-Stokes equations, a set of partial differential equations
that are supposed to hold throughout the fluid. The equations are usually
written as

%—l-ﬁ-Vﬁ%— le=§+ vV - Vi, (1.1)

at p
V-i=0. (1.2)

These may appear pretty complicated at first glance! We'll soon break them
down into easy-to-understand parts (and in Appendix B provide a more
rigorous explanation), but first let's begin by defining what each symbol
means.

1.1 Symbols

The letter @ is traditionally used in fluid mechanics for the velocity of the
fluid. Why not @7 It’s hard to say, but it fits another useful convention
to call the three components of 3D velocity (u,v,w), just as the three
components of position T are often taken to be (z,y, z).

The Greek letter p stands for the density of the fluid. For water, this is
roughly 1000 kg/m?, and for air in usual sea-level conditions this is roughly
1.3 kg/m3, a ratio of about 700 : 1.

It's worth emphasizing right away my insistence on using real units
(meters, kilograms, etc.): long experience has shown me that it is well
worth keeping all quantities in a solver implicitly in SI units, rather than
just set to arbitrary values. It is tempting when starting to program a
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new solver to just fill in unit-less values like 1 for physical quantities such
as density or to drop them altogether from expressions, whether you're
operating from a quick-and-dirty just-make-it-work point of view or a more
mathematically founded non-dimensionalization rationale!. However, this
often comes back to haunt you when simulations don’t quite look right, or
need to be resized, or adjusted in other ways where it’s not clear which of a
plethora of nonphysical parameters need to be tweaked. We'll discuss the
ramifications of this in algorithm design as well throughout the book.

The letter p stands for pressure, the force per unit area that the fluid
exerts on anything.

The letter g is the familiar acceleration due to gravity, usually
(0,-9.81,0) m/s%. Now is a good time to mention that in this book we’ll
take as a convention that the y-axis is pointing vertically upwards, and the
- and z-axes are horizontal. We should add that in animation, additional
control accelerations (to make the fluid behave in some desired way) might
be added on top of gravity — we’ll lump all of these into the one symbol g.
More generally, people call these body forces, because they are applied
throughout the whole body of fluid, not just on the surfaces.

The Greek letter v is technically called the kinematic viscosity. It
measures how viscous the fluid is. Fluids like molasses have high viscosity,
and fluids like mercury have low viscosity: it measures how much the fluid
resists deforming while it flows (or more intuitively, how difficult it is to
stir).

1.2 The Momentum Equation

The first differential equation (1.1), which is actually three in one wrapped
up as a vector equation, is called the momentum equation. This really
is good old Newton’s equation F' = ma in disguise. It tells us how the fluid
accelerates due to the forces acting on it. We'll try to break this down
before moving onto the second differential equation (1.2), which is called
the incompressibility condition.

Let’s first imagine we are simulating a fluid using a particle system
(later in the book we will actually use this as a practical method, but
for now let’s just use it as a thought experiment). Each particle might
represent a little blob of fluid. It would have a mass m, a volume V', and
a velocity 4. To integrate the system forward in time all we need is to

I Non-dimensionalization is a strategy for mathematically simplifying physical equa-
tions by rewriting all quantities as ratios to characteristic values of the problem at the
hand, like the usual density of the fluid and the width of the container, rather than using
SI units. This can reduce the number of constants that appear in the equations to the
minimal set that matter, making some analysis much easier.



1.2, The Momentum Equation 5

figure out what the forces acting on each particle are: F = md then tells
us how the particle accelerates, from which we get its motion. We'll write
the acceleration of the particle in slightly odd notation (which we’ll later
relate to the momentum equation above):

Du

Dt’

The big D derivative notation is called the material derivative (more on
this later). Newton’s law is now

a=

Du
mﬁ =f
So what are the forces acting on the particle? The simplest is of course
gravity: mg. However, it gets interesting when we consider how the rest of
the fluid also exerts force: how the particle interacts with other particles
nearby.

The first of the fluid forces is pressure. High-pressure regions push on
lower-pressure regions. Note that what we really care about is the net
force on the particle: for example, if the pressure is equal in every di-
rection there’'s going to be a net force of zero and no acceleration due to
pressure. We only see an effect on the fluid particle when there is an im-
balance, i.e. higher pressure on one side of the particle than on the other
side, resulting in a force pointing away from the high pressure and toward
the low pressure. In the appendices we show how to rigorously derive
this, but for now let’s just point out that the simplest way to measure
the imbalance in pressure at the position of the particle is simply to take
the negative gradient of pressure: —Vp. (Recall from calculus that the
gradient is in the direction of “steepest ascent,” thus the negative gradi-
ent points away from high-pressure regions toward low-pressure regions.)
We'll need to integrate this over the volume of our blob of fluid to get
the pressure force. As a simple approximation, we'll just multiply by the
volume V. You might be asking yourself, but what is the pressure? We’ll
skip over this until later, when we talk about incompressibility, but for now
you can think of it being whatever it takes to keep the fluid at constant
volume.

The other fluid force is due to viscosity. A viscous fluid tries to resist
deforming. Later we will derive this in more depth, but for now let’s
intuitively develop this as a force that tries to make our particle move at
the average velocity of the nearby particles, i.e., that tries to minimize
differences in velocity between nearby bits of fluid. You may remember
from image processing, digital geometry processing, the physics of diffusion
or heat dissipation, or many other domains, that the differential operator
that measures how far a quantity is from the average around it is the
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Laplacian V - V. (Now is a good time to mention that there is a quick
review of vector calculus in the appendices, including differential operators
like the Laplacian.) This will provide our viscous force then, once we've
integrated it over the volume of the blob. We'll use the dynamic viscosity
coefficient, which is denoted with the Greek letter  (dynamic means we're
getting a force out of it; the kinematic viscosity from before is used to get
an acceleration instead). I'll note here that near the surface of a liquid
(where there isn’t a complete neighborhood around the blob) and for fluids
with variable viscosity, this term ends up being a little more complicated;
see Chapter 10 for more details.
Putting it all together, here’s how a blob of fluid moves:

m& mg—VVp+ VuV . Vi.
Dt

Obviously we're making errors when we approximate a fluid with a small
finite number of particles. We will take the limit then as our number of
particles goes to infinity and the size of each blob goes to zero. Of course,
this clearly makes a different sort of error, as real fluids are in fact composed
of a (very large) finite number of molecules! But this limit, which we call
the continuum model, has the advantages of mathematical conciseness
and independence from the exact number of blobs, and has been shown
experimentally to be in extraordinarily close agreement with reality in a
vast range of scenarios. However, taking the continuum limit does pose a
problem in our particle equation, because the mass m and volume V of the
particle must then go to zero, and we are left with nothing meaningful. We
can fix this by first dividing the equation by the volume, and then taking
the limit. Remembering m/V is just the fluid density p, we get

Du

Por = pg— Vp+pV - Vi.

Looking familiar? We'll divide by the density and rearrange the terms a
bit to get

Di i

— =g+ =V - V.

Dr + V =g+ P
To simplify things even a llttle more, we'll define the kinematic viscosity
as v = u/p to get

117)1;+ -Vp=g+vV- Vi,

We've almost made it back to the momentum equation! In fact this
form, using the material derivative D/Dt, is actually more important to us
in computer graphics and will guide us in solving the equation numerically.
But we still will want to understand what the material derivative is and
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how it relates back to the traditional form of the momentum equation. For
that, we'll need to understand the difference between the Lagrangian and
Eulerian viewpoints.

1.3 Lagrangian and Eulerian Viewpoints

When we think about a continuum (like a fluid or a deformable solid)
moving, there are two approaches to tracking this motion: the Lagrangian
viewpoint and the Eulerian viewpoint.

The Lagrangian approach, named after the French mathematician La-
grange, is what you’re probably most familiar with. It treats the continuum
just like a particle system. Each point in the fluid or solid is labeled as a
separate particle, with a position & and a velocity 4. You could even think
of each particle as being one molecule of the fluid. Nothing too special here!
Solids are almost always simulated in a Lagrangian way, with a discrete set
of particles usually connected up in a mesh.

The Eulerian approach, named after the Swiss mathematician Euler,
takes a different tactic that’s usually used for fluids. Instead of tracking
each particle, we instead look at fixed points in space and see how mea-
surements of fluid quantities, such as density, velocity, temperature, etc.,
at those points change in time. The fluid is probably flowing past those
points, contributing one sort of change: for example, as a warm fluid moves
past followed by a cold fluid, the temperature at the fixed point in space
will decrease—even though the temperature of any individual particle in
the fluid is not changing! In addition the fluid variables can be changing
in the fluid, contributing the other sort of change that might be measured
at a fixed point: for example, the temperature measured at a fixed point
in space will decrease as the fluid everywhere cools off.

One way to think of the two viewpoints is in doing a weather report.
In the Lagrangian viewpoint you're in a balloon floating along with the
wind, measuring the pressure and temperature and humidity, etc., of the
air that’s flowing alongside you. In the Eulerian viewpoint you're stuck on
the ground, measuring the pressure and temperature and humidity, etc., of
the air that’s flowing past. Both measurements can create a graph of how
conditions are changing, but the graphs can be completely different as they
are measuring the rate of change in fundamentally different ways.

Numerically, the Lagrangian viewpoint corresponds to a particle sys-
tem, with or without a mesh connecting up the particles, and the Eulerian
viewpoint corresponds to using a fixed grid that doesn’t change in space
even as the fluid flows through it.

It might seem the Eulerian approach is unnecessarily complicated: why
not just stick with Lagrangian particle systems? Indeed, there are schemes,
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such as vortex methods (see, e.g., [YUM86, GLG95, AN05, PK05]) and
smoothed particle hydrodynamics (SPH) (see, e.g., [DC96,MCG03,PTB*03])
that do this. However, even these rely on the Eulerian-derived equations
for forces in the fluid, and in this book we will largely stick with Eulerian
methods for a few reasons:

e It’s easier to analytically work with the spatial derivatives like the
pressure gradient and viscosity term in the Eulerian viewpoint.

e It's much easier to numerically approximate those spatial derivatives
on a fixed Eulerian mesh than on a cloud of arbitrarily moving par-
ticles.

The key to connecting the two viewpoints is the material derivative.
We'll start with a Lagrangian description: there are particles with positions
7 and velocities 1. Let’s look at a generic quantity we’ll call g: each particle
has a value for ¢. (Quantity ¢ might be density, or velocity, or temperature,
or many other things.) In particular, the function g(t, T) tells us the value
of g at time ¢ for the particle that happens to be at position #: this is an
Eulerian variable since it’s a function of space, not of particles. So how fast
is g changing for the particle whose position is given by Z(¢) as a function
of time, i.e., the Lagrangian question? Just take the total derivative (a.k.a.
the Chain Rule):

d ~ dq dr
EQ(’ (t))_52+vq'E
_Oq -
—’a+vq
= Da
Dt

This is the material derivative!

Let’s review the two terms that go into the material derivative. The
first is 9g/dt. which is just how fast ¢ is changing at that fixed point in
space, an Eulerian measurement. The second term, Vq -1, is correcting for
how much of that change is due just to differences in the fluid lowing past
(e.g., the temperature changing because hot air is being replaced by cold
air, not because the temperature of any molecule is changing).

Just for completeness, let’s write out the material derivative in full,
with all the partial derivatives:

Dg 9q  0q 0q  Oq

Dt §+ _+Ud_+ 0z

Obviously in 2D, we can just get rid of the w- and z-term.



