


Types and Programming Languages
Benjamin C. Pierce

A type system is a syntactic method for automatically checking the absence of certain erroneous
behaviors by classifying program phrases according to the kinds of values they compute. The study

of type systems—and of programming languages from a type-theoretic perspective—has important
applications in software engineering, language design, high-performance compilers, and security. g

This text provides a comprehensive introduction both to type systems in computer science ‘and
to the basic theory of programming languages. The approach is pragmatic and operational; each new

concept is motivated by programming examples and the more theoretical sections are driven by the
needs of implementations. Each chapter is accompanied by numerous exercises and solutions, as well
as a running implementation, available via the Web. Dependencies between chapters are explicitly
identified, allowing readers to choose a variety of paths ti;.r‘,(.)‘ugh the material.

.' ‘ Benjamin C. Pierce is Associate Professor of Computer and Information Science at the
University of Pennsylvania. 3

: “Types are the leaven of computer programming; they make it digestible. This excellent book uses
types to navigate the rich variety of programming languages, bringing a new kind of unity to their

e usage, theory, and implementation. Its author writes with the authority of experience in all three of

these aspects.” % ;

—Robin Milner, Compgter Laboratory, University of Cambridge

5
“Written by an outstanding researcher, this book is well organized and very clear, spanning both
theory and implementation techniques, and reflecting considerable experience in teaching and
expertise in the subject.” :

—John Reynolds, School of Computer Science, Carnegie Mellon University

“Pierce’s book not only pfevides a comprehensive account of types for programming languages, but
it does so in an engagingly elegant and concrete style that places equal emphasis on theoretical foun-
dations and the practical problems of programming. This book will be the definitive reference for
many years to come.”

—Robert Harper, Professor, Computer Science Department, Carnegie Mellon University

“Types and Programming Languages is carefully written with a well-balanced choice of topics. It focuses
on pragmatics, with the right level of necessary theory. The exercises range from easy to challenging

and provide stimulating material for beginning and advanced readers, both programmers and' the

more theoretically minded.”
—Henk Barendregt, Faculty of Science, Matheniatics, and Computer Science, University of
Nijmegen, The Netherlands

Cover photo by Benjamin C. Pierce

The MIT Press ' 0-262-16209-1
Massachusetts Institute of Technology '
Cambridge, Massachusetts 02142 || H'I“ ml ”H ||I|
http://mitpress.mit.edu

780262"1620

| 90000
W o

98






Types and Programming Languages

Benjamin C. Pierce

The MIT Press
Cambridge, Massachusetts
London, England



©2002 Benjamin C. Pierce

All rights reserved. No part of this book may be reproduced in any form by
any electronic of mechanical means (including photocopying, recording, or
information storage and retrieval) without permission in writing from the
publisher.

This book was set in Lucida Bright by the author using the KIEX document
preparation system.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Pierce, Benjamin C.
Types and programming languages / Benjamin C. Pierce
p. cm.
Includes bibliographical references and index.
ISBN 0-262-16209-1 (hc. : alk. paper)
1. Programming languages (Electronic computers). I. Title.

QA76.7 .P54 2002
005.13—dc21
2001044428



Types and Programming Languages






Preface

The study of type systems—and of programming languages from a type-
theoretic perspective—has become an energetic field with major applications
in software engineering, language design, high-performance compiler imple-
mentation, and security. This text offers a comprehensive introduction to the
fundamental definitions, results, and techniques in the area.

Audience

The book addresses two main audiences: graduate students and researchers
specializing in programming languages and type theory, and graduate stu-
dents and mature undergraduates from all areas of computer science who
want an introduction to key concepts in the theory of programming lan-
guages. For the former group, the book supplies a thorough tour of the field,
with sufficient depth to proceed directly to the research literature. For the
latter, it provides extensive introductory material and a wealth of examples,
exercises, and case studies. It can serve as the main text for both introductory
graduate-level courses and advanced seminars in programming languages.

Goals

A primary aim is coverage of core topics, including basic operational seman-
tics and associated proof techniques, the untyped lambda-calculus, simple
type systems, universal and existential polymorphism, type reconstruction,
subtyping, bounded quantification, recursive types, and type operators, with
shorter discussions of numerous other topics.

A second main goal is pragmatism. The book concentrates on the use of
type systems in programming languages, at the expense of some topics (such
as denotational semantics) that probably would be included in a more mathe-
matical text on typed lambda-calculi. The underlying computational substrate



Xiv

Preface

is a call-by-value lambda-calculus, which matches most present-day program-
ming languages and extends easily to imperative constructs such as refer-
ences and exceptions. For each language feature, the main concerns are the
practical motivations for considering this feature, the techniques needed to
prove safety of languages that include it, and the implementation issues that
it raises—in particular, the design and analysis of typechecking algorithms.

A further goal is respect for the diversity of the field; the book covers
numerous individual topics and several well-understood combinations but
does not attempt to bring everything together into a single unified system.
Unified presentations have been given for some subsets of the topics—for
example, many varieties of “arrow types” can be elegantly and compactly
treated in the uniform notation of pure type systems—but the field as a whole
is still growing too rapidly to be fully systematized.

The book is designed for ease of use, both in courses and for self-study.
Full solutions are provided for most of the exercises. Core definitions are or-
ganized into self-contained figures for easy reference. Dependencies between
concepts and systems are made as explicit as possible. The text is supple-
mented with an extensive bibliography and index.

A final organizing principle is honesty. All the systems discussed in the
book (except a few that are only mentioned in passing) are implemented. Each
chapter is accompanied by a typechecker and interpreter that are used to
check the examples mechanically. These implementations are available from
the book’s web site and can be used for programming exercises, experiment-
ing with extensions, and larger class projects.

To achieve these goals, some other desirable properties have necessarily
been sacrificed. The most important of these is completeness of coverage.
Surveying the whole area of programming languages and type systems is
probably impossible in one book—certainly in a textbook. The focus here is
on careful development of core concepts; numerous pointers to the research
literature are supplied as starting points for further study. A second non-goal
is the practical efficiency of the typechecking algorithms: this is not a book
on industrial-strength compiler or typechecker implementation.

Structure

Part I of the book discusses untyped systems. Basic concepts of abstract syn-
tax, inductive definitions and proofs, inference rules, and operational seman-
tics are introduced first in the setting of a very simple language of numbers
and booleans, then repeated for the untyped lambda-calculus. Part II covers
the simply typed lambda-calculus and a variety of basic language features
such as products, sums, records, variants, references, and exceptions. A pre-



Preface xv

liminary chapter on typed arithmetic expressions provides a gentle introduc-
tion to the key idea of type safety. An optional chapter develops a proof
of normalization for the simply typed lambda-calculus using Tait’s method.
Part Il addresses the fundamental mechanism of subtyping; it includes a
detailed discussion of metatheory and two extended case studies. Part IV
covers recursive types, in both the simple iso-recursive and the trickier equi-
recursive formulations. The second of the two chapters in this part develops
the metatheory of a system with equi-recursive types and subtyping in the
mathematical framework of coinduction. Part V takes up polymorphism, with
chapters on ML-style type reconstruction, the more powerful impredicative
polymorphism of System F, existential quantification and its connections with
abstract data types, and the combination of polymorphism and subtyping in
systems with bounded quantification. Part VI deals with type operators. One
chapter covers basic concepts; the next develops System F, and its metathe-
ory; the next combines type operators and bounded quantification to yield
System F%; the final chapter is a closing case study.

The major dependencies between chapters are outlined in Figure P-1. Gray
arrows indicate that only part of a later chapter depends on an earlier one.

The treatment of each language feature discussed in the book follows a
common pattern. Motivating examples are first; then formal definitions; then
proofs of basic properties such as type safety; then (usually in a separate
chapter) a deeper investigation of metatheory, leading to typechecking algo-
rithms and their proofs of soundness, completeness, and termination; and
finally (again in a separate chapter) the concrete realization of these algo-
rithms as an OCaml (Objective Caml) program.

An important source of examples throughout the book is the analysis and
design of features for object-oriented programming. Four case-study chap-
ters develop different approaches in detail—a simple model of conventional
imperative objects and classes (Chapter 18), a core calculus based on Java
(Chapter 19), a more refined account of imperative objects using bounded
quantification (Chapter 27), and a treatment of objects and classes in the
purely functional setting of System F%, using existential types (Chapter 32).

To keep the book small enough to be covered in a one-semester advanced
course—and light enough to be lifted by the average graduate student—it was
necessary to exclude many interesting and important topics. Denotational
and axiomatic approaches to semantics are omitted completely; there are al-
ready excellent books covering these approaches, and addressing them here
would detract from this book’s strongly pragmatic, implementation-oriented
perspective. The rich connections between type systems and logic are sug-
gested in a few places but not developed in detail; while important, these
would take us too far afield. Many advanced features of programming lan-



29

-l —|

STE—

31

32

Figure P-1: Chapter dependencies

Preface



Preface Xvii

guages and type systems are mentioned only in passing, e.g, dependent types,
intersection types, and the Curry-Howard correspondence; short sections on
these topics provide starting points for further reading. Finally, except for a
brief excursion into a Java-like core language (Chapter 19), the book focuses
entirely on systems based on the lambda-calculus; however, the concepts and
mechanisms developed in this setting can be transferred directly to related
areas such as typed concurrent languages, typed assembly languages, and
specialized object calculi.

Required Background

The text assumes no preparation in the theory of programming languages,
but readers should start with a degree of mathematical maturity—in particu-
lar, rigorous undergraduate coursework in discrete mathematics, algorithms,
and elementary logic.

Readers should be familiar with at least one higher-order functional pro-
gramming language (Scheme, ML, Haskell, etc.), and with basic concepts of
programming languages and compilers (abstract syntax, BNF grammars, eval-
uation, abstract machines, etc.). This material is available in many excellent
undergraduate texts; I particularly like Essentials of Programming Languages
by Friedman, Wand, and Haynes (2001) and Programming Language Prag-
matics by Scott (1999). Experience with an object-oriented language such as
Java (Arnold and Gosling, 1996) is useful in several chapters.

The chapters on concrete implementations of typecheckers present signif-
icant code fragments in OCaml (or Objective Caml), a popular dialect of ML.
Prior knowledge of OCaml is helpful in these chapters, but not absolutely nec-
essary; only a small part of the language is used, and features are explained
at their first occurrence. These chapters constitute a distinct thread from the
rest of the book and can be skipped completely if desired.

The best textbook on OCaml at the moment is Cousineau and Mauny’s
(1998). The tutorial materials packaged with the OCaml distribution (avail-
able at http://caml.inria.fr and http://www.ocaml.org) are also very
readable.

Readers familiar with the other major dialect of ML, Standard ML, should
have no trouble following the OCaml code fragments. Popular textbooks on
Standard ML include those by Paulson (1996) and Ullman (1997).

Course Outlines

An intermediate or advanced graduate course should be able to cover most
of the book in a semester. Figure P-2 gives a sample syllabus from an upper-



XViii

Preface

level course for doctoral students at the University of Pennsylvania (two 90-
minute lectures a week, assuming minimal prior preparation in programming
language theory but moving quickly).

For an undergraduate or an introductory graduate course, there are a num-
ber of possible paths through the material. A course on type systems in pro-
gramming would concentrate on the chapters that introduce various typing
features and illustrate their uses and omit most of the metatheory and im-
plementation chapters. Alternatively, a course on basic theory and implemen-
tation of type systems would progress through all the early chapters, prob-
ably skipping Chapter 12 (and perhaps 18 and 21) and sacrificing the more
advanced material toward the end of the book. Shorter courses can also be
constructed by selecting particular chapters of interest using the dependency
diagram in Figure P-1.

The book is also suitable as the main text for a more general graduate
course in theory of programming languages. Such a course might spend half
to two-thirds of a semester working through the better part of the book and
devote the rest to, say, a unit on the theory of concurrency based on Milner’s
pi-calculus book (1999), an introduction to Hoare Logic and axiomatic seman-
tics (e.g. Winskel, 1993), or a survey of advanced language features such as
continuations or module systems.

In a course where term projects play a major role, it may be desirable to
postpone some of the theoretical material (e.g., normalization, and perhaps
some of the chapters on metatheory) so that a broad range of examples can
be covered before students choose project topics.

Exercises

Most chapters include extensive exercises—some designed for pencil and pa-
per, some involving programming examples in the calculi under discussion,
and some concerning extensions to the ML implementations of these cal-
culi. The estimated difficulty of each exercise is indicated using the following
scale:

% Quick check 30 seconds to 5 minutes
* % Easy < 1 hour

* %k Moderate < 3 hours

*k ok k Challenging > 3 hours

Exercises marked * are intended as real-time checks of important concepts.
Readers are strongly encouraged to pause for each one of these before mov-
ing on to the material that follows. In each chapter, a roughly homework-
assignment-sized set of exercises is labeled RECOMMENDED.



Preface Xix

LECTURE TOPIC READING
1. Course overview; history; administrivia 1, (2)

2. Preliminaries: syntax, operational semantics 3, 4

3. Introduction to the lambda-calculus 5.1, 5.2
4, Formalizing the lambda-calculus 5.3,6,7
5. Types; the simply typed lambda-calculus 8,9, 10
6. Simple extensions; derived forms 11

7 More extensions 11

8. Normalization 12

9. References; exceptions 13,14
10. Subtyping 15

11. Metatheory of subtyping 16,17
12. Imperative objects 18

13. Featherweight Java 19

14. Recursive types 20

15. Metatheory of recursive types 21

16. Metatheory of recursive types 21

17. Type reconstruction 22

18. Universal polymorphism 23

19. Existential polymorphism; ADTs 24, (25)
20. Bounded quantification 26, 27
21. Metatheory of bounded quantification 28

22. Type operators 29

23. Metatheory of F, 30

24. Higher-order subtyping 31

25; Purely functional objects 32

26. Overflow lecture

Figure P-2: Sample syllabus for an advanced graduate course

Complete solutions to most of the exercises are provided in Appendix A.
To save readers the frustration of searching for solutions to the few exercises
for which solutions are not available, those exercises are marked +.

Typographic Conventions

Most chapters introduce the features of some type system in a discursive
style, then define the system formally as a collection of inference rules in one
or more figures. For easy reference, these definitions are usually presented
in full, including not only the new rules for the features under discussion at
the moment, but also the rest of the rules needed to constitute a complete



Preface

calculus. The new parts are set on a gray background to make the “delta”
from previous systems visually obvious.

An unusual feature of the book’s production is that all the examples are
mechanically typechecked during typesetting: a script goes through each chap-
ter, extracts the examples, generates and compiles a custom typechecker con-
taining the features under discussion, applies it to the examples, and inserts
the checker’s responses in the text. The system that does the hard parts of
this, called TinkerType, was developed by Michael Levin and myself (2001).
Funding for this research was provided by the National Science Foundation,
through grants CCR-9701826, Principled Foundations for Programming with
Objects, and CCR-9912352, Modular Type Systems.

Electronic Resources
A web site associated with this book can be found at the following URL:
http://www.cis.upenn.edu/~bcpierce/tapl

Resources available on this site include errata for the text, suggestions for
course projects, pointers to supplemental material contributed by readers,
and a collection of implementations (typecheckers and simple interpreters)
of the calculi covered in each chapter of the text.

These implementations offer an environment for experimenting with the
examples in the book and testing solutions to exercises. They have also been
polished for readability and modifiability and have been used successfully by
students in my courses as the basis of both small implementation exercises
and larger course projects. The implementations are written in OCaml. The
OCaml compiler is available at no cost through http://caml.inria.fr and
installs very easily on most platforms.

Readers should also be aware of the Types Forum, an email list covering
all aspects of type systems and their applications. The list is moderated to
ensure reasonably low volume and a high signal-to-noise ratio in announce-
ments and discussions. Archives and subscription instructions can be found
at http://www.cis.upenn.edu/~bcpierce/types.

Acknowledgments

Readers who find value in this book owe their biggest debt of gratitude to four
mentors—Luca Cardelli, Bob Harper, Robin Milner, and John Reynolds—who
taught me most of what I know about programming languages and types.
The rest I have learned mostly through collaborations; besides Luca, Bob,
Robin, and John, my partners in these investigations have included Martin



Preface XXi

Abadi, Gordon Plotkin, Randy Pollack, David N. Turner, Didier Rémy, Davide
Sangiorgi, Adriana Compagnoni, Martin Hofmann, Giuseppe Castagna, Martin
Steffen, Kim Bruce, Naoki Kobayashi, Haruo Hosoya, Atsushi Igarashi, Philip
Wadler, Peter Buneman, Vladimir Gapeyev, Michael Levin, Peter Sewell, Jérome
Vouillon, and Eijiro Sumii. These collaborations are the foundation not only
of my understanding, but also of my pleasure in the topic.

The structure and organization of this text have been improved by discus-
sions on pedagogy with Thorsten Altenkirch, Bob Harper, and John Reynolds,
and the text itself by corrections and comments from Jim Alexander, Penny
Anderson, Josh Berdine, Tony Bonner, John Tang Boyland, Dave Clarke, Diego
Dainese, Olivier Danvy, Matthew Davis, Vladimir Gapeyev, Bob Harper, Eric
Hilsdale, Haruo Hosoya, Atsushi Igarashi, Robert Irwin, Takayasu Ito, Assaf
Kfoury, Michael Levin, Vassily Litvinov, Pablo Lopez Olivas, Dave MacQueen,
Narciso Marti-Oliet, Philippe Meunier, Robin Milner, Matti Nykdnen, Gordon
Plotkin, John Prevost, Fermin Reig, Didier Rémy, John Reynolds, James Riely,
Ohad Rodeh, Jirgen Schlegelmilch, Alan Schmitt, Andrew Schoonmaker, Olin
Shivers, Perdita Stevens, Chris Stone, Eijiro Sumii, Val Tannen, Jérome Vouil-
lon, and Philip Wadler. (I apologize if I've inadvertently omitted anybody
from this list.) Luca Cardelli, Roger Hindley, Dave MacQueen, John Reynolds,
and Jonathan Seldin offered insiders’ perspectives on some tangled historical
points.

The participants in my graduate seminars at Indiana University in 1997
and 1998 and at the University of Pennsylvania in 1999 and 2000 soldiered
through early versions of the manuscript; their reactions and comments gave
me crucial guidance in shaping the book as you see it. Bob Prior and his
team from The MIT Press expertly guided the manuscript through the many
phases of the publication process. The book’s design is based on IXIgX macros
developed by Christopher Manning for The MIT Press.

Proofs of programs are too boring for the social process of mathematics to
work. —Richard DeMillo, Richard Lipton, and Alan Perlis, 1979

... So don't rely on social processes for verification. —David Dill, 1999

Formal methods will never have a significant impact until they can be used
by people that don’t understand them. —attributed to Tom Melham



MREEgEiN: FELEAREFEELNE:  www. ertongbook. com



