Intelligent Systems Reference Library 139

Marco Picone Stefano Busanelli Michele Amoretti Francesco Zanichelli Gianluigi Ferrari

Advanced Technologies for Intelligent Transportation Systems

Marco Picone · Stefano Busanelli Michele Amoretti · Francesco Zanichelli Gianluigi Ferrari

Advanced Technologies for Intelligent Transportation Systems

Marco Picone Michele Amoretti Francesco Zanichelli Gianluigi Ferrari Dipartimento di Ingegneria dell'Informazione Università degli studi di Parma Parma Italy Stefano Busanelli Università degli studi di Parma Parma Italy

ISSN 1868-4394 ISBN 978-3-319-10667-0 DOI 10.1007/978-3-319-10668-7 ISSN 1868-4408 (electronic) ISBN 978-3-319-10668-7 (eBook)

Library of Congress Control Number: 2014947668

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

We cannot teach people anything; we can only help them discover it within themselves.

Galileo Galilei

The beginning of all science is wondering why things are the way they are.

Aristotele

To my parents and all the people that supported me during these years

Marco Picone

To all who have loved me, to all whom I have loved

Stefano Busanelli

To my parents and Annalisa, for their endless support

Michele Amoretti

To Niccolò and Rita, my only wealth

Francesco Zanichelli

To Sofia, Viola, and Anna, the north stars of my sky

Gianluigi Ferrari

此为试读,需要完整PDF请访问: www.ertongbook.com

Foreword

Intelligent Transportation Systems (ITS) have lately earned center stage as some of the most relevant technologies to academia, industries, and the society in general. Their strong suit is *transversality*, as the development of ITS straddles several different research fields (e.g., from communication to logistics), and has a dramatic impact on many real-world aspects.

Applications supported by ITS range from safety to entertainment, and all of them will lead to tangible improvements of our daily life. Among such applications, those that aim at reducing energy consumption and carbon footprint deserve special mention, as they make ITS one of the green technologies that will define an ecofriendly society.

It is therefore evident that introductory and teaching material on ITS, as well as in-depth studies in this field, are precious resources for students, engineers, researchers, and anyone who would like to enhance her knowledge on the world we live in.

This book, Advanced Technologies for Intelligent Transportation Systems, is the work of one of the most renowned groups of experts in the field. It first presents the fundamental aspects of ITS in a tutorial manner, then it moves toward more advanced topics. It successfully covers a vast range of technical aspects such as communication, networking, security, applications. Additionally, the book provides an insightful overview of the major analytical and experimental methodologies for the study of ITS, which is one of its most unique merits.

This book thus represents the definitive guide to ITS: an excellent reference for students as well as for researchers working in the field. I am certain that all readers will enjoy it.

Turin, May 2014

Carla Fabiana Chiasserini

Preface

This books is by no means a treatise on all aspects of Intelligent Transportation Systems (ITSs). Rather, it attempts to present a unified perspective on ITS, encompassing a few advanced technologies which we came in touch with during part of our research activity in the last years. In particular, one of the peculiarities of this book is the presentation of possible solutions at various communication layers, encompassing both computer science-oriented (high layers) and telecommunication-oriented (low layers) perspectives. Along the way, we describe, in a coherent fashion, a number of interwoven innovative technologies. The approach is thus inherently cross-layer, in the sense that we cover different wireless communication protocols, but we also take into account application-level services. The intended audience is academic and industrial professionals, with good technical skills in information and communication technologies. To ease reading, we have limited as much as possible the mathematical details, which are mostly reported in the appendices of the book.

The contents of the book flow from a preliminary regulatory overview to more technical issues. The synopsis can be summarized as follows. The first chapter presents ITS principles and a brief standardization history, comparing European and US visions. Emerging worldwide ITS architectures are also illustrated, together with the most relevant envisioned ITS applications. The second chapter goes more deeply into the analysis of the communication paradigms and technologies that enable ITSs. Key challenges in vehicular networks are discussed, taking into account Vehicle-to-X (V2X) communications. A survey of the literature on centralized client/server and decentralized Peer-to-Peer (P2P) vehicular networks is proposed. This chapter terminates with the presentation of the most important enabling communication technologies for future ITSs, namely: cellular networks, WiFi, IEEE 802.11p, WAVE and ETSI ITS. The third chapter is fully devoted to wireless communications for Vehicular Ad hoc NETworks (VANETs). We first investigate probabilistic broadcast protocols with silencing, a recursive analytical performance evaluation framework and simulations. Then, we analyze the performance of VANETs as distributed wireless sensor networks. The fourth chapter presents X-NETAD, a hierarchical architecture for "cross-network" ITS

xii Preface

communications. Experimental results are illustrated and discussed. The *fifth* chapter focuses on application-level distributed algorithms for ITS. In particular, the Distributed Geographic Table (DGT) P2P overlay scheme is presented, and its performance is evaluated, relying on both analytical and simulation results. The DGT for Vehicular Networks (D4V) architecture, supporting a number of ITS applications, is finally presented.

We remark that the specific protocols and architectures considered in this book are "representative," as opposed to "optimal." In other words, we set to write this book mainly to provide the reader with our (limited) view on the subject. Our hope is that this book will be interpreted as a starting point and a useful comparative reference. Some of the tools used in the book (for example, the simulator DEUS) are open-source and available to the interested reader.

It is our pleasure to thank all the collaborators and students who were with us during the years of research which have led to this book, collaborating with our two groups at the Department of Information Engineering of the University of Parma: the Wireless Ad hoc and Sensor Networks (WASN) Lab and the Distributed Sytems Group (DSG). We cannot thank them one by one, but their contributions were instrumental to get here. Finally, we express our sincere gratitude to Springer for giving us the opportunity to complete this project. In particular, we are indebted to Dr. Cristoph Bauman, who believed in this project from the very beginning, and to Mrs. Janet Sterritt-Brunner, our production project coordinator, who was very kind and (above all) very patient.

Parma, June 2014

Marco Picone Stefano Busanelli Michele Amoretti Francesco Zanichelli Gianluigi Ferrari

Acronyms

ABC Always Best Connected

AC Access Class
ACK Acknowledgment

AIFS Arbitration Inter-Frame Space

AP Access Point

AS Application Server

ASV Advanced Safety Vehicle

BA Basic Access
BC Backoff Counter

BPAB Binary Partition Assisted Protocol

BPSK Binary Phase Shift Keying

BS Base Station
BSS Basic Service Set

BTP Basic Transport Protocol

C2C-CC Car 2 Car Communications Consortium
CALM Communications Access for Land Mobiles

CAM Cooperative Awareness Message
CCK Complementary Code Keying
CCP Cluster Confirmation Packet
CDF Cumulative Distribution Function

CHE-IF Cluster-Head Election IF
CIP Cluster Initialization Packet

C-ITS Cooperative ITS

COTS Commercial Off-The-Shelf
CP Coverage Percentage

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

D2D Device-to-Device D4V DGT for VSN

DCF Distributed Coordination Function

DENM Decentralized Environmental Notification Message

xviii Acronyms

DFE Distance From Event

DGT Distributed Geographic Table

DHT Distributed Hash Table
DIFS Distributed InterFrame Space

DK DGT Kernel

DMH DGT Message Handler/Dispacher

DSRC Dedicated Short-Range Communications

DSSS Direct Sequence Spread Spectrum

EC European Commission

ECDA Enhanced Distributed Channel Access

ECU Engine Control Unit EG Event Generator EIFS Extended IFS

EMDV Emergency Message for Vehicular Environments

ERP Extended Rate PHY

ETSI European Telecommunications Standards Institute

EU European Union

FCC Federal Communications Commission

FCS Frame Control Sequence

FHSS Frequency Hopping Spread Spectrum FHWA Federal Highway Administration

FNTP Fast Networking and Transport Layer protocol

FSAP Fast Service Advertisement Protocol

FTM Fluid Traffic Model

GB GeoBucket

GDP Gross Domestic Product GM Geo-Bucket Manager

GP Global Position

GPA Global Positioning System
HCCA HCF Controlled Channel Access
HCF Hybrid Coordination Function

HR/DSSS High Rate Direct Sequence Spread Spectrum

I2V Infrastructure-to-Vehicle

IBSS Independent BSS

ICT Information Communication Technologies
IDM-LC Intelligent Driver Motion with Lane Changes

IF Irresponsible Forwarding

ITS Intelligent Transportation System

ITSC ITS Communication

IVC Inter-Vehicular Communication

IVCES In-Vehicle Communications and Entertainment System

LM Location Manager

LocHNESs Localizing and Handling Network Event System

LTE-A LTE Advanced M2M Machine-to-Machine Acronyms

MAC Medium Access Control

MAF Mass Air Flow

MANET Mobile Ad-hoc NETworks

MBMS Multimedia Broadcast Multicast Service
MCDS Minimum Connected Dominant Set
MIMO Multiple-Input Multiple-Output

ML Map Loader MM Mobility Model

NHTSA National Highway Traffic Safety Administration

NPE Node Position Error
OBU On-Board Unit

OFDM Orthogonal Frequency Division Multiplexing

OIS On-board Infotainment System

P2P Peer-to-Peer

PAF Probability Assignment Function

PATH Partners for Advanced Transportation TecHnology

PCF Point Coordination Function PDF Probability Density Function

PER Packet Error Rate

PMF Probability Mass Function

PP Probe Packet
PU Primary User
QoS Quality of Service
RB Resource Block
RE REachability

RITA Research and Innovative Technology Administration

RSU Road Side Unit RTD Round-Trip Delay

RTS/CTS Ready-To-Send/Clear-To-Send RTSM Real-Time Simulation Monitoring

SB Smart Broadcast

SDO Standards Development Organizations

SIFS Short Inter Frame Space

SL Sip2Peer Layer
SM Subscription Manager
SNR Signal to Noise Ratio

SS Switch Station

SSWE Switch Station Web Editor
TD Transmission Domain
TE Transmission Efficiency

TSF Timing Synchronization Function

TTL Time To Live

TXOP Transmission Opportunity
UDP User Data Protocol
UI User Interface

xx Acronyms

UMB Urban Multihop Broadcast USA United States of America

USDOT United States Department of Transportation

V2I Vehicle-to-Infrastructure V2V Vehicle-to-Vehicle

V2X Vehicle-to-X

VSN Vehicular Sensor Network

WAVE Wireless Access in Vehicular Environments

WLAN Wireless Local Area Network

WPA WiFi Protected Access

WSA WAVE Service Advertisement WSMP WAVE Short Message Protocol

X-NETAD Cross-Network Effective Traffic Alert Dissemination

Contents

1	Intr	oduction										
	1.1	Principles and Challenges										
	1.2	Standardization History and Open Issues										
		1.2.1 Worldwide Standardization Process										
		1.2.2 European Vision										
		1.2.3 American Vision	9									
	1.3	ITS Architecture										
		1.3.1 A Global Standardization Effort										
		1.3.2 ISO/ETSI ITS Station Architecture	(
		1.3.3 WAVE Station Architecture	1.									
	1.4	ITS Applications.	1.									
	**:	1.4.1 Traffic Information Services	1:									
	1.5	Chapter Outlines.	10									
		rences.	1									
	11010	OND	1									
2	Communication Paradigms and Literature Analysis											
	2.1											
		2.1.1 Terminology and Definition	2									
		2.1.2 Key Challenges in Vehicular Networks	22									
		2.1.3 Network Topology	24									
	2.2	Vehicle-to-X Communications	26									
	24,24	2.2.1 Key Features of a V2X Communication Protocol	26									
		2.2.2 Vehicle-to-X Communication Paradigms	27									
	2.3	Centralized Client/Server Technologies	29									
	2.4											
	2.5	Enabling Technologies	32									
	2.0	2.5.1 Cellular Networks.	41									
		2.5.2 WiFi and WiFi Direct	42									
		2.5.3 IEEE 802.11p and WAVE	44									
		2.5.3 IEEE 802.11p and WAVE										
	Dafas		46									
	Kelel	ences	47									

xiv Contents

3	Wire	eless Co	mmunications for Vehicular Ad-Hoc Networks	51							
	3.1	Inform	nation Dissemination in Loosely-Coupled VANETs	51							
	3.2	Multil	nop Broadcast Protocols	53							
		3.2.1	Reference Scenario	54							
		3.2.2	Performance Metrics of Interest	55							
	3.3	Avera	ge Distribution of Poisson Points in a Segment								
		with F	Finite Length	56							
	3.4	A Qui	ck Overview of the IEEE 802.11b Standard	58							
		3.4.1	The IEEE 802.11 Standard	58							
		3.4.2	Physical Layer	58							
		3.4.3	MAC Layer	59							
		3.4.4	Main IEEE 802.11 Parameters	62							
	3.5	Probab	bilistic Broadcast Protocols with Silencing	62							
		3.5.1	Preliminaries Considerations	62							
		3.5.2	Polynomial Broadcast Protocol	64							
		3.5.3	Silencing Irresponsible Forwarding	65							
	3.6	A Rec	cursive Analytical Performance Evaluation Framework	66							
		3.6.1	Local (Single Transmission Domain) Performance								
			Analysis with a Given Number of Nodes	66							
		3.6.2	Global Performance Analysis with Fixed								
			Number of Nodes	69							
		3.6.3	Generalization to a PPP-Based Scenario	71							
	3.7	Perfor	mance Analysis in Realistic Scenarios	73							
		3.7.1	Polynomial Protocol	73							
		3.7.2	Silencing Irresponsible Forwarding	76							
		3.7.3	Comparison with Benchmark Protocols	77							
		3.7.4	Highway-Style Scenarios	80							
	3.8	VANE	ETs as Distributed Wireless Sensor Networks	82							
		3.8.1	System Model	82							
		3.8.2	Clustered VANET Creation and IVCs	83							
	Refe	rences		87							
	IIiom	a wahi aa l	Analiteature for Chass I area ITS								
			Architecture for Cross Layer ITS	91							
	4.1										
	4.1			91							
	4.2		d Works	92 94							
	4.3	4.3.1		94							
		4.5.1	Information Dissemination Through	0.4							
		122	Multihop Communications	94							
		4.3.2	A Push/Pull Dissemination Approach	95							
		4.3.3	Securing X-NETAD	96							

Contents

4.	Application Design and Implementation on Android											
	Smartphones	98										
	4.4.1 System Overview and Challenges	99										
	4.4.2 Message Structure and Dissemination Protocol	100										
	4.4.3 System Architecture	10.										
4.		104										
	4.5.1 Metrics of Interest	10:										
	4.5.2 Preliminary Results	105										
	4.5.3 Tests in Ideal Static Scenarios	108										
	4.5.4 Tests in a Mobile Scenario	114										
	4.5.5 Discussion	118										
R	ferences	119										
5 N	ovel Distributed Algorithms for Intelligent Transportation											
	stems	12										
5.		12										
5.		122										
5.		123										
-	5.3.1 Routing Strategy	124										
	5.3.2 Data Structure	126										
	5.3.3 Network Join	126										
	5.3.4 Peer Lookup	127										
	5.3.5 Position Update	129										
5.		130										
	5.5 DGT and Mobility											
2.,	5.5.1 Mobility Model with Vertical Handover	135										
5.		142										
2.0	5.6.1 Packet Delay Model	144										
	5.6.2 DEUS Model	149										
5.		167										
	5.7.1 Traffic Information System and Vehicular	10										
	Sensor Networks.	168										
	5.7.2 D4V	170										
5.		172										
5.0		179										
2.	D4V Prototype	182										
5												
5.		195										
Ke	ferences.	196										
Appen	lix A: DEUS: A Simple Tool for Complex Simulations	201										
Annon	liv R. Mathematical Frameworks	215										

xvi		Contents

Appendix	C:	Batc	h-Based	Group	Key	Management	e ::e			 ,	٠		227
Index			I kale I a	ala escer								4	237

Chapter 1 Introduction

1.1 Principles and Challenges

Intelligent Transportation Systems (ITSs) promise to hugely improve safety, efficiency and sustainability of our transportation system, by means of a massive adoption of Information Communication Technologies (ICTs) [1–3]. Not surprisingly, in last decades ITSs have attracted the worldwide interest of researchers, automotive companies, and governments. In order to create an economically sustainable ITS ecosystem, a large number of projects have been conducted by institutions from all around the world [4]. For instance, the Advanced Safety Vehicle (ASV) program in Japan [5], the IntelliDrive project in the United States [6], and, in Europe, the numerous projects coordinated by the Car 2 Car Communications Consortium (C2C-CC) [7], strongly supported by the European Commission [8] and by the European Telecommunications Standards Institute (ETSI) [9].

In the marketplace, ITSs boast a long series of success histories, carried out by either car manufacturers (with active safety systems), toll road infrastructures operators (with Electronic Tolling Systems), insurance companies (with black boxes), Internet companies (with traffic information systems). However, current ITS hardware, software, and communication technologies are closed, i.e., unable to share data and cooperate together. In other words, current ITS applications are implemented as "silos", thus yielding to equipment duplication and no data sharing. Such a fragmented approach is typical of the first development phase of new technologies, where innovation is driven by pioneers. Figure 1.1 illustrates some significant ITS applications, implemented according to the stand-alone or not-cooperative approach.

Next years' biggest challenge will be to achieve a *Cooperative ITS (C-ITS)* ecosystem, where secured data are shared across several ITS applications developed by independent actors, leveraging on a solid basis of international standards, as represented in Fig. 1.2. Such a C-ITS ecosystem would facilitate actions and decisions that improve transportation safety, sustainability, efficiency and comfort beyond that achievable by stand-alone ITS systems.

© Springer International Publishing Switzerland 2015
M. Picone et al., Advanced Technologies for Intelligent Transportation Systems,
Intelligent Systems Reference Library 139, DOI 10.1007/978-3-319-10668-7_1