LECTURE NOTES IN LOGIC

TURING’S LEGACY

DEVELOPMENTS FROM
TurING'Ss IDEAS IN LOGIC

EDITED BY
- ROD DOWNEY

CAMBRIDGE ’ \‘ ;I

Lecture Notes in Logic 42

Turing’s Legacy: Developments from
Turing’s Ideas in Logic

Edited by
ROD DOWNEY
Victoria University of Wellington

/\OL

ASSOCIATION FOR SYMBOLIC LOGIC

s CAMBRIDGE

%')pp UNIVERSITY PRESS

CAMBRIDGE
UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107043480

© Association for Symbolic Logic 2014

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2014
Printed in the United Kingdom by CPI Group Ltd, Croydon CRO 4yy
A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data
Turing’s legacy : developments from Turing’s ideas in logic / edited by Rod Downey,
Victoria University of Wellington.
pages cm. — (Lecture notes in logic ; 42)
Includes bibliographical references and index.
ISBN 978-1-107-04348-0 (hardback)

. Computational complexity. 2. Machine theory. 3. Turing, Alan Mathison,
1912-1954. 1. Downey, R. G. (Rod G.), editor of compilation.
QA267.7.T87 2014
510.92-dc23 2014000240

ISBN 978-1-107-04348-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

TURING'S LEGACY:
DEVELOPMENTS FROM TURING'S IDEAS IN LOGIC

§1. Introduction. The year 2012 was the centenary of the birth of one of
the most brilliant mathematicians of the 20th century. There were many cele-
brations of this fact. and many conferences based around Turing’s work and
life during 2012. In particular. there was a half year program (Syntax and Se-
mantics) at the Newton Institute in Cambridge. and many “Turing 100/Cen-
tenary” conferences throughout the year. These events included truly major
meetings featuring many of the world’s best mathematicians and computer
scientists (and even Gary Kasparov) around his actual birth day of June 23.
including The Incomputable. ACM A. M. Turing Centenary Celebration. How
the World Computes (CiE 2012). and The Turing Centenary Conference. There
are also a number of publications devoted to Turing’s life, work and legacy.

To the general public. Turing is probably best known for his part in Bletchley
Park and the war-winning efforts of the code-breakers at Hut 8. To biologists.
Turing is best known for his work on morphogenesis. the paper “A Chemical
Basis for Morphogenesis™ being his most highly cited work.

To logicians. and computer scientists. Alan Turing is best known for his
work in computation. arguably leading to the development of the digital
computer. This development has caused almost certainly the most profound
change in human history in the last century. Turing’s work in computation
grew from philosophical questions in logic. Thus it seems fitting that the
Association for Symbolic Logic sponsored this volume.

The idea for this volume is to (mainly) look at the various ways Turing’s ideas
in logic have developed into major programs in the landscape of mathematics
and philosophy in th early 21st Century. That is, where did these ideas go? A
number of leading experts were invited to participate in this enterprise. All of
the papers were reviewed both for readability by non-experts and for content
by other experts.

§2. Turing’s work. There is an excellent archive of Turing’s work in
http://www.turing.org.uk/sources/biblio.html.

Jack Copeland (sometimes with Diane Proudfoot) have historical articles and
books such as [1. 2. 3]. Below we give a few brief comments and refer the

Research supported by the Marsden Fund of New Zealand.

vii

viii ROD DOWNEY

reader to these and the books Davis [4] and to Herken [5] for more historical
comments. as well as the articles in this volume by Nerode. Sieg and Soare.
Turing [7] worked famously on the Entscheidungsproblem. the question of
the decision problem for validity of first order predicate calculus. His work and
that of Church. Kleene. Post and others solved the problem. Turing’s paper
of 1936 laid the foundations for the advent of stored program computers.
His 1936 paper had the key idea of stored program computers via universal
machines. Turing knew of the possibilities of large scale electronic computers
following the groundbreaking ideas of Fred Flowers with his work on Colossus
in the second world war. Turing’s analysis of computation and his introduction
of universal machines are discussed in both Sieg’s and Soare’s articles.
In a lecture of 1947. Turing said of his design of ACE (automated computing

engine)

“The special machine may be called the universal machine: it works

in the following quite simple manner. When we have decided what

machine we wish to imitate we punch a description of it on the tape

of the universal machine The universal machine has only to

keep looking at this description in order to find out what it should do

at each stage. Thus the complexity of the machine to be imitated is

concentrated in the tape and does not appear in the universal machine

properinanyway [D]igital computing machines such as the ACE

... are in fact practical versions of the universal machine.”

In 1943. McCulloch and Pitt used Turing ideas to show the control mech-
anism for a TM could be simulated by a finite collection of gates with delays.
These ideas were later developed by von Neumann and others which lead to
ENIAC in 1943. A friend of von Newmann who worked with him on the
Atomic bomb project was Stanley Frankel (see [3]) who is quoted as saying
the following:

“von Neumann was well aware of the fundamental importance of Tur-
ing’s paper of 1936 ‘On computable numbers which describes in
principle the “Universal Computer’ ... Many people have acclaimed
von Neumann as the ‘father of the computer’ (in a modern sense of
the term) but I am sure that he would never have made that mistake
himself. He might well be called the midwife. perhaps, but he firmly
emphasized to me, and to others I am sure. that the fundamental
conception is owing to Turing.”

Turing designed the ACE. Whilst never built. Turing’s design was the basis of
the architecture of several computers. For example, Huxley’s G15 computer.
the first PC (about the size of a fridge) was based on it, with about 400 sold
worldwide. and remaining in use until 1970(!).

The world’s first programmable computer was built in Manchester by Tur-
ing’s lifelong friend Max Newman (who Turing met in 1935). Turing was

TURING'S LEGACY ix

involved in this project and wrote the world’s first programming manual. Tur-
ing also proposed methods of symbolic program verification. and logically
constructing programs. His thesis, “Systems of logic based on ordinals.”
looked at transfinite methods of verification. In this thesis [8]. Turing also
introduces the notion of an oracle Turing machine which is essential for our
understanding of relative computability and computational complexity.

Remarkably. Turing wrote the world’s first computer chess program before
there were programmable computers. The reader interested in this should look
at Kasparov’s talk video-ed at the Turing Centenary Conference at Manchester
(Kasparov and Friedel [6]). Turing’s ideas of using optimization of functions
as a control method for artificial intelligence are at the vanguard of all such
work.

Turing thought deeply about artificial intelligence with articles such as [9].
This is reflected by the well-known Turing test and the article he wrote whilst on
sabbatical in Cambridge. infamously judged as a “schoolboy effort” by Charles
Darwin. his government boss. For more on this see Copeland—Proudfoot [3].

The present volume has an article by Freer, Roy and Tennenbaum around Al
As well. we have a fascinating article on automated theorem proving by Hales.
This article also is concerned with practical aspects of computation. something
of great interest to Turing as witnessed by his famous article on ill-posedness
of matrix operations. Lenore Blum has contributed a article to this volume
about such questions and the “other theory of computation.”

Other generalizations of the notion of algorithm are discussed in articles
by Welch and by Normann. These are “higher” generalizations of the notion
of computation to computations on ordinals and the transfinite. Finally,
the generalization of the notion of computation to the quantum is given in
Buhrman’s article.

Turing’s ideas of computation are critical to our understanding of random-
ness. The article by Downey looks at the development of pure computability
theory. and its use in the theory algorithmic randomness. Downey’s article
also looks at Turing’s anticipation of the Martin-Lof idea of using compu-
tation to bound the theory of measure as seen in his unpublished work on
normality (Turing [10]).

Turing’s original paper [7] was concerned with computation of the real
numbers and functions. Thus. he wrote the first paper on computable analysis.
Computable analysis and its developments are discussed in the article by
Avigad and Brattka.

The article by Homer and Selman discusses how modern computational
complexity theory has developed from Turing’s ideas.

Turing had many technical contributions in mathematical logic. His early
articles in the Journal of Symbolic Logic showed the equivalences of various
models of computation. Turing also proved the undecidability of the word

X ROD DOWNEY

problem for cancellation semigroups. Charles Miller ITI contributes a long ar-
ticle concerning how these ideas have panned out in the area of combinatorial
group theory. and where this important subject has gone in the last 50 years.
In the same spirit. the article by Fokina. Harizanov and Melnikov looks at
how Turing’s ideas have developed in the computability theory of structures.
such as logical models and algebraic structures.

We have not concerned ourselves with Turing’s work on morphogenesis. as
we are concentrating on logical developments. For this reason we have chosen
not to follow his ideas on code-breaking and cryptography. These are very
well chronicled in many books on the work of Turing and others at Bletchley
park. It is widely reported that the work of this group of 1.200 workers and
the efforts of the powerful group of mathematicians in “Hut 8" shortened the
war by at least 2 years. and saved millions of lives. It is also clear that we
could have added several other articles in other areas.

Nevertheless. we believe that this volume here represents an important
collection of articles giving an insight into both a great mind and into how
mathematics and logic (in and about computation) have developed in the last
70 years. We hope you enjoy the result.

The Editor
Rod Downey

REFERENCES

[1]1Jack CopeLaND. The essential Turing. Oxford University Press, Oxford and New York,
September 2004.

[2] . Alan Turing’s automatic computing engine: The master codebreaker’s struggle to
build the modern computer, Oxford University Press, Oxford and New York, June 2005.

[31Jack Copetanp and DiaNE PROUDFOOT, Alan Turing father of the modern com-
puter, The Rutherford Journal, vol. 4 (2011-2012), http://www.rutherfordjournal.org/
article040101.html.

[4] MARTIN Davis. The undecidable: Basic papers on undecidable propositions, unsolvable
problems and computable functions. Dover, 1965,

[5] ROLF HERKEN. The universal Turing machine: A half-century survey. Springer-Verlag, 1995.

[6] Gary Kasparov and FReDERIC FRIEDEL, The reconstruction of Turing’s “ Paper Machine”,

[7] ALaN TURING. On computable numbers with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society. vol. 42 (1936). pp. 230-265, correction in
Proceedings of the London Mathematical Society vol. 43 (1937), pp. 544-546.

[8] . Systems of logic based on ordinals. Proceedings of the London Mathematical
Society. vol. 45 (1939), no. 2. pp. 161-228.

[9] . Computing machinery and intelligence, Mind. vol. 59 (1950). pp. 433-460.

[10] . A note on normal numbers. Collected works of A. M. Turing: Pure mathematics
(J. L. Britton. editor). North Holland, Amsterdam. 1992, pp. 117-119, with notes of the editor
in 263-265.

CONTENTS

Rod Downey. editor
Turing’s legacy: developments from Turing’s ideas in logic vii

Jeremy Avigad and Vasco Brattka

Computability and analysis: the legacy of Alan Turing 1
Lenore Blum

Alan Turing and the other theory of computation (expanded)....... 48
Harry Buhrman

Turing in Quantumland o 70
Rod Downey

Computability theory. algorithmic randomness and Turing’s

PV 0 61571 0118 (o) o U 90

Ekaterina B. Fokina. Valentina Harizanov. and Alexander Melnikov
Computable model theory.........coovniiiiiiiiiiii i 124

Cameron E. Freer. Daniel M. Roy. and Joshua B. Tenenbaum
Towards common-sense reasoning via conditional simulation:

legacies of Turing in Artificial Intelligence.......................... 195
Thomas C. Hales

Mathematics in the age of the Turing machine...................... 253
Steven Homer and Alan L. Selman

Turing and the development of computational complexity 299
Charles F. Miller 111

Turing machines to word problemscooiiiiiii. .. 329
Anil Nerode

Musings on Turing’s Thesis.oouiiiiiiiir i nnnn, 386
Dag Normann

Higher generalizations of the Turing Model........ axs v wvemoonmagl Tge M ens 397
Wilfried Sieg

Step by recursive step: Church’s analysis of effective calculability.... 434

v

vi

Robert Irving Soare

CONTENTS

Turing and the discovery of computability..........................

P. D. Welch
Transfinite machine models

COMPUTABILITY AND ANALYSIS:
THE LEGACY OF ALAN TURING

JEREMY AVIGAD AND VASCO BRATTKA

§1. Introduction. For most of its history, mathematics was algorithmic in
nature. The geometric claims in Euclid’s Elements fall into two distinct cat-
egories: “problems.” which assert that a construction can be carried out to
meet a given specification. and “theorems.” which assert that some property
holds of a particular geometric configuration. For example. Proposition 10
of Book I reads “To bisect a given straight line.” Euclid’s “proof™ gives the
construction. and ends with the (Greek equivalent of) Q.E.F.. for quod erat
faciendum. or “that which was to be done.” Proofs of theorems. in con-
trast. end with Q.E.D.. for quod erat demonstrandum. or “that which was
to be shown™; but even these typically involve the construction of auxiliary
geometric objects in order to verify the claim.

Similarly. algebra was devoted to developing algorithms for solving equa-
tions. This outlook characterized the subject from its origins in ancient
Egypt and Babylon. through the ninth century work of al-Khwarizmi. to
the solutions to the quadratic and cubic equations in Cardano’s Ars Magna
of 1545. and to Lagrange’s study of the quintic in his Réflexions sur la résolution
algébrique des équations of 1770.

The theory of probability. which was born in an exchange of letters between
Blaise Pascal and Pierre de Fermat in 1654 and developed further by Christian
Huygens and Jakob Bernoulli. provided methods for calculating odds related
to games of chance. Abraham de Moivre’s 1718 monograph on the subject
was entitled The Doctrine of Chances: or. a Method for Calculating the Proba-
bilities of Events in Play. Pierre de Laplace’s monumental Théorie analytique
des probabilités expanded the scope of the subject dramatically. addressing
statistical problems related to everything from astronomical measurement to
the measurement in the social sciences and the reliability of testimony. Even
so. the emphasis remained fixed on explicit calculation.

Analysis had an algorithmic flavor as well. In the early seventeenth cen-
tury. Cavalieri. Fermat. Pascal. and Wallis developed methods of computing
“quadratures.” or areas of regions bounded by curves. as well as volumes.
In the hands of Newton. the calculus became a method of explaining and

Turing’s Legacy: Developments from Turing’s Ideas in Logic

Edited by Rod Downey

Lecture Notes in Logic. 42

© 2014, ASSOCIATION FOR SymBoLic LoGic 1

2 JEREMY AVIGAD AND VASCO BRATTKA

predicting the motion of heavenly and sublunary objects. Euler’s Introductio
in Analysis Infinitorum of 1748 was the first work to base the calculus explicitly
on the notion of a _function: but. for Euler. functions were given by piecewise
analytic expressions. and once again, his focus was on methods of calculation.

All this is not to say that all the functions and operations considered by
mathematicians were computable in the modern sense. Some of Euclid’s
constructions involve a case split on whether two points are equal or not. and.
similarly, Euler’s piecewise analytic functions were not always continuous. In
contrast. we will see below that functions on the reals that are computable
in the modern sense are necessarily continuous. And even though Euler’s
work is sensitive to the rates of convergence of analytic expressions. these
rates were not made explicit. But these are quibbles. and. generally speaking.
mathematical arguments through the eighteenth century provided informal
algorithms for finding objects asserted to exist.

The situation changed dramatically in the nineteenth century. Galois’ the-
ory of equations implicitly assumed that all the roots of a polynomial exist
somewhere. but Gauss’ 1799 proof of the fundamental theorem of algebra, for
example. did not show how to compute them. In 1837, Dirichlet considered
the example of a “function” from the real numbers to the real numbers which is
equal to 1 on the rationals and 0 on the irrationals. without pausing to consider
whether such a function is calculable in any sense. The Bolzano-Weierstraf3
Theorem. first proved by Bolzano in 1817, asserts that any bounded sequence
of real numbers has a convergent subsequence: in general, there will be no
way of computing such a subsequence. Riemann’s proof of the open mapping
theorem was based on the Dirichlet principle, an existence principle that is not
computationally valid. Cantor’s work on the convergence of Fourier series led
him to consider transfinite iterations of point-set operations. and. ultimately.
to develop the abstract notion of set.

Although the tensions between conceptual and computational points of
view were most salient in analysis. other branches of mathematics were not
immune. For example. in 1871. Richard Dedekind defined the modern notion
of an ideal in a ring of algebraic integers, and defined operations on ideals in
a purely extensional way. In other words. the operations were defined in such
a way that they do not presuppose any particular representation of the ideals.
and definitions do not indicate how to compute the operations in terms of
such representations. More dramatically. in 1890, Hilbert proved what is now
known as the Hilbert Basis Theorem. This asserts that. given any sequence
J1.f2. f3.... of multivariate polynomials over a Noetherian ring, there is
some n such that for every m > n. f, is in the ideal generated by f...., f,.
Such an m cannot be computed by surveying elements of the sequence, since it
is not even a continuous function on the space of sequences: even if a sequence
X, x. X, ... starts out looking like a constant sequence, one cannot rule out the
possibility that the element 1 will eventually appear.

COMPUTABILITY AND ANALYSIS: THE LEGACY OF ALAN TURING 3

Such shifts were controversial. and raised questions as to whether the
new. abstract. set-theoretic methods were appropriate to mathematics. Set-
theoretic paradoxes in the early twentieth century raised the additional ques-
tion as to whether they are even consistent. Brouwer’s attempt. in the 1910s.
to found mathematics on an “intuitionistic” conception raised a further chal-
lenge to modern methods. and in 1921. Hermann Weyl. Hilbert’s best student.
announced that he was joining the Brouwerian revolution. The twentieth cen-
tury Grundlagenstreit. or “crisis of foundations.” was born.

At that point. two radically different paths were open to the mathematical
community:

e Restrict the methods of mathematics so that mathematical theorems have
direct computational validity. In particular. restrict methods so that
sets and functions asserted to exist are computable. as well as infinitary
mathematical objects and structures more generally: and also ensure that
quantifier dependences are also constructive. so that a “forall-exists™
statement asserts the existence of a computable transformation.

e Expand the methods of mathematics to allow idealized and abstract
operations on infinite objects and structures. without concern as to how
these objects are represented. and without concern as to whether the
operations have a direct computational interpretation.

Mainstream contemporary mathematics has chosen decisively in favor of the
latter. But computation is important to mathematics. and faced with a non-
constructive development. there are options available to those specifically
interested in computation. For example. one can look for computation-
ally valid versions of nonconstructive mathematical theorems. as one does in
computable and computational mathematics. constructive mathematics, and
numerical analysis. There are, in addition. various ways of measuring the
extent to which ordinary theorems fail to be computable. and characterizing
the data needed to make them so.

With Turing’s analysis of computability. we now have precise ways of saying
what it means for various types of mathematical objects to be computable.
stating mathematical theorems in computational terms. and specifying the
data relative to which operations of interest are computable. Section 2 thus
discusses computable analysis. whereby mathematical theorems are made com-
putationally significant by stating the computational content explicitly.

There are still communities of mathematicians. however. who are commit-
ted to developing mathematics in such a way that every concept and assertion
has an implicit computational meaning. Turing’s analysis of computability is
useful here. too. in a different way: by representing such styles of mathematics
in formal axiomatic terms. we can make this implicit computational inter-
pretation mathematically explicit. Section 3 thus discusses different styles of
constructive mathematics. and the computational semantics thereof.

4 JEREMY AVIGAD AND VASCO BRATTKA

§2. Computable analysis.

2.1. From Leibniz to Turing. An interest in the nature of computation can
be found in the seventeenth century work of Leibniz (see [47]). For example.
his stepped reckoner improved on earlier mechanical calculating devices like
the one of Pascal. It was the first calculating machine that was able to perform
all four basic arithmetical operations. and it earned Leibniz an external mem-
bership of the British Royal Society at the age of 24. Leibniz’s development of
calculus is better known. as is the corresponding priority dispute with New-
ton. Leibniz paid considerable attention to choosing notations and symbols
carefully in order to facilitate calculation. and his use of the integral symbol
J and the d symbol for derivatives have survived to the present day. Leibniz’s
work on the binary number system. long before the advent of digital comput-
ers, is also worth mentioning. A more important contribution to the study
of computation was his notion of a calculus ratiocinator. that is. a calculus of
reasoning. Such a calculus. Leibniz held. would allow one to resolve disputes
in a purely mathematical fashion:'

The only way to rectify our reasonings is to make them as tangible
as those of the Mathematicians, so that we can find our error at a
glance, and when there are disputes among persons, we can simply
say: Let us calculate, without further ado, to see who is right.

His attempts to develop such a calculus amount to an early form of symbolic
logic.

With this perspective. it is not farfetched to see Leibniz as initiating a
series of developments that culminate in Turing’s work. Norbert Wiener has
described the relationship in the following way [231]:

The history of the modern computing machine goes back to Leibniz
and Pascal. Indeed. the general idea of a computing machine is
nothing but a mechanization of Leibniz’s calculus ratiocinator. It
is. therefore. not at all remarkable that the theory of the present
computing machine has come to meet the later developments of the
algebra of logic anticipated by Leibniz. Turing has even suggested
that the problem of decision. for any mathematical situation. can
always be reduced to the construction of an appropriate computing
machine.

2.2. From Borel to Turing. Perhaps the first serious attempt to express the
mathematical concepts of a computable real number and a computable func-
tion on the real numbers were made by Emil Borel around 1912. the year that
Alan Turing was born. Borel defined computable real numbers as follows:?

"Leibniz, The Art of Discovery, 1685 [232].
2All citations of Borel are from [19]. which is a reprint of [18]. The translations here are by
the authors of this article: obvious mistakes in the original have been corrected.

COMPUTABILITY AND ANALYSIS: THE LEGACY OF ALAN TURING 5

We say that a number « is computable if. given a natural number n.
we can obtain a rational number that differs from a by at most %

Of course. before the advent of Turing machines or any other formal notion
of computability. the meaning of the phrase “we can obtain” remained vague.
But Borel provided the following additional information in a footnote to that
phrase:

I intentionally leave aside the practical length of operations. which
can be shorter or longer: the essential point is that each operation
can be executed in finite time with a safe method that is unambigu-
ous.

This makes it clear that Borel had an intuitive notion of an algorithm in
mind. Borel then indicated the importance of number representations. and
argued that decimal expansions have no special theoretical value. whereas
continued fraction expansions are not invariant under arithmetic operations
and hence of no practical value. He went on to discuss the problem of
determining whether two real numbers are equal:

The first problem in the theory of computable numbers is the prob-
lem of equality of two such numbers. If two computable numbers
are unequal. this can obviously be noticed by computing both with
sufficient precision. but in general it will not be known a priori.
One can make clear progress in determining a lower bound on the
difference of two computable numbers. whose definitions satisfy
known conditions.

In modern terms. what Borel seems to recognize here is that although
there is no algorithm that decides whether two computable real numbers are
equal. the inequality relation between computable reals is. at least. computably
enumerable. He then discussed a notion of the height of a number. which is
based on counting the number of steps needed to construct that number. in a
certain way. This concept can be seen as an early forerunner of the concept
of Kolmogorov complexity. Borel considered ways that this concept might be
utilized in addressing the equality problem.

In another section of his paper. Borel discussed the concept of a computable
real number function. which he defined as follows:

We say that a function is computable if its value is computable for
any computable value of the variable. In other words. if « is a
computable number. one has to know how to compute the value
of f(a) with precision 1 for any n. One should not forget that.
by definition. to be given a computable number « just means to be
given a method to obtain an arbitrary approximation to a.

It is worth noting that Borel only demanded computability at computable
inputs in his definition. His definition is vague in the sense that he did not

6 JEREMY AVIGAD AND VASCO BRATTKA

indicate whether he had in mind an algorithm that transfers a method to
compute « into a method to compute f («) (which would later become known
as Markov computability or the Russian approach) or whether he had in mind
an algorithm that transfers an approximation of « into an approximation of
f (e) (which is closer to what we now call a computable function on the real
numbers, under the Polish approach). He also did not say explicitly that his
algorithm to compute f is meant to be uniform, but this seems to be implied
by his subsequent observation:

A function cannot be computable. if it is not continuous at all
computable values of the variable.

A footnote to this observation then indicates that he had the Polish approach
in mind:?

In order to make the computation of a function effectively possible
with a given precision. one additionally needs to know the modulus
of continuity of the function, which is the [...] relation [...]
between the variation of the function values with respect to the
variation of the variable.

Borel went on to discuss different types of discontinuous functions, includ-
ing those that we now call Borel measurable. In fact. the entire discussion
of computable real numbers and computable real functions is preliminary
to Borel’s development of measure theory. and the discussion was meant to
motivate aspects of that development.

2.3. Turing on computable analysis. Turing’s landmark 1936 paper [207]
is titled “On computable numbers. with an application to the Entscheid-
ungsproblem.” It begins as follows:

The “computable” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite
means. Although the subject of this paper is ostensibly the com-
putable numbers. it is almost equally easy to define and investigate
computable functions of an integrable variable or a real or com-
putable variable. computable predicates. and so forth. The fun-
damental problems involved are. however, the same in each case.
and I have chosen the computable numbers for explicit treatment
as involving the least cumbrous technique. I hope shortly to give an
account of the relations of the computable numbers, functions. and

3Hence Borel’s result that computability implies continuity cannor be seen as an early version
of the famous theorem of Ceitin, in contrast to what is suggested in [214]. The aforementioned
theorem states that any Markov computable function is already effectively continuous on com-
putable inputs and hence computable in Borel’s sense, see sections 2.5 and 3, Figure 5. While
this is a deep result. the observation that computable functions in Borel's sense are continuous is
obvious.

COMPUTABILITY AND ANALYSIS: THE LEGACY OF ALAN TURING 7

so forth to one another. This will include a development of the the-
ory of functions of a real variable expressed in terms of computable
numbers. According to my definition. a number is computable if
its decimal can be written down by a machine.

At least two things are striking about these opening words. The first is
that Turing chose not to motivate his notion of computation in terms of the
ability to characterize the notion of a computable function from N to N. or
the notion of a computable ser of natural numbers. as in most contemporary
presentations: but. rather, in terms of the ability to characterize the notion
of a computable real number. In fact. Section 10 is titled “Examples of large
classes of numbers which are computable.” There. he introduced the notion
of a computable function on computable real numbers. and the notion of
computable convergence for a sequence of computable numbers. and so on:
and argued that, for example. ¢ and 7 and the real zeros of the Bessel functions
are computable. The second striking fact is that he also flagged his intention
of developing a full-blown theory of computable real analysis. As it turns out,
this was a task that ultimately fell to his successors, as we explain below.

The precise definition of a computable real number given by Turing in the
original paper can be expressed as follows: a real number r is computable
if there is a computable sequence of Os and 1s with the property that the
fractional part of r is equal to the real number obtained by prefixing that
sequence with a binary point. There is a slight problem with this definition.,
however. which Turing discussed in a later correction [208]. published in 1937.
Suppose we have a procedure that. for every /. outputs a rational number g¢;
with the property that

II‘ = q,‘] < 2_i.

Intuitively. in that case, we would also want to consider r to be a computable
real number, because we can compute it to any desired accuracy. In fact.
it is not hard to show that this second definition coincides with the first: a
real number has a computable binary expansion if and only if it is possible
to compute it in the second sense. In other words. the two definitions are
extensionally equivalent.

The problem. however. is that it is not possible to pass uniformly between
these two representations. in a computable way. For example. suppose a
procedure of the second type begins to output the sequence of approximations
3 % J.-... Then it is difficult to determine what the first binary digit is.
because at some point the output could jump just above or just below l: This
intuition can be made precise: allowing the sequence in general to depend
on the halting behavior of a Turing machine, one can show that there is
no algorithmic procedure which. given a description of a Turing machine
describing a real number by a sequence of rational approximations. computes

8 JEREMY AVIGAD AND VASCO BRATTKA

the digits of r. On the other hand. for any fixed description of the first sort.
there is a computable description of the second sort: either r is a dyadic
rational, which is to say. it has a finite binary expansion: or waiting long
enough will always provide enough information to determine the digits. So
the difference only shows up when one wishes to talk about computations
which take descriptions of real numbers as input. In that case. as Turing
noted. the second type of definition is more natural: and. as we will see below.
these are the descriptions of the computable reals that form the basis for
computable analysis.

Turing’s second representation of computable reals. presented in his correc-
tion [208]. is given by the formula

(2i = 1)n +Z..C,—l ()
r=1
where i and n provide the integer part of the represented number and the
binary sequence ¢, the fractional part. This representation is essentially what
has later been called a signed-digit representation with base 3- Itis interesting
that Turing acknowledged Brouwer’s influence (see also [72]):

This use of overlapping intervals for the definition of real numbers
is due originally to Brouwer.

In the 1936 paper. in addition to discussing individual computable real
numbers. Turing also defined the notion of a computable function on real
numbers. Like Borel. he adopted the standpoint that the input to such a
function needs to be computable itself:

We cannot define general computable functions of a real variable,
since there is no general method of describing a real number. but
we can define a computable function of a computable variable.

A fewyears later Turing introduced oracle machines [210]. which would have
allowed him to handle computable functions on arbirrary real inputs, simply
by considering the input as an oracle given from outside and not as being
itself computed in some specific way. But the 1936 definition ran as follows.
First. Turing extended his definition of computable real numbers 7, from the
unit interval to all real numbers using the formula o, = tan(z(y, — —)) He
went on:

Now let ¢(n) be a computable function which can be shown to be
such that for any satisfactory* argument its value is satisfactory.
Then the function f. defined by f(a,) = Qy(y)- 18 @ computable
function and all computable functions of a computable variable are
expressible in this form.

4Turing calls a natural number n satisfactory if. in modern terms. n is a Godel index of a total
computable function.

