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PREFACE

Equations of parabolic type are encountered in many branches of mathematics
and mathematical physics, and the forms in which they are investigated vary wide-
ly. The equations encountered most frequently (and in adjoining fields of study
almost exclusively) are those of second order. Such equations (and certain classes
of systems of second order), both lineax and quasi-linear, make up the subject of
investigation of the present book. Our study of these equations is concerned main-
ly with the solvability of their boundary value problems and with an analysis of
the connections between the smoothness of the solutions and the smoothness of
the known functions entering into the problem. 3

A basic condition that is assumed to be fulfilled fot all equations considered
is the condition of uniform parabolicity. For such equations we have managed to
give sufficiently complete answers to central questions on the solvability of the
above-indicated problems and to establish a series of exact dependences of the
properties of the solutions on the properties of the known functions in temms of
their mutual membership in the most commonly occurring funcuon spaces.

For linear equations the solvability of the basic bomdary value ptoblm and
of the Cauchy problem depends only on the smoothness of the functions defining
the problem (i. e. the functions considered to be known in the problem, namely the
coefficients and the free terms of the eqhations, the functions nsl,pmg the in-
itial and boundary conditions and the boundary of the domain i in which the solu-
tion exists). The smoother these known functions, the bettgg behaved will be the
solution. Conversely, if one worsens the properties of the ‘k‘noln functions ig. the
problem, then the differential properties of the solutions alsg become worse, where
the deterioration (as would equally be true with an improvement) has ;local char-
acter (for example, the smoothness of the solutions inside their domain of aeﬁgi-.;
tion is determined only by the smoothness of the coefficients and free terms of -
the equation and does not ;iepend on the smoothness of the boundary or of the in- '
itial and boundary functions). But one cannot arbitrarily worsen the properties of
the functions defining the problem (for example, admit in the coefficients singu-

. larities of high order). There exists a limit to admissible deteriorations, beyond

which such properties of the problems as uniqueness are lost. As in the mily_si'a-

iii
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carried out by us for elliptic équations in the book [65 4] we begin by determin-
ing this limit, for which we construct appropriate examples. With these examples
(and examples from [651, 8, 0]) we have managed to outline with sufficient accu-
racy the limits of a possible theory of boundary value problems for equations with
discontinuous and, in general, unbounded coefficients and free terms, which is
later presented in Chapter III.

As a characteristic of such ‘‘bad’’ known functions we have selected their
membership in the spaces L i A{Qp). ) The solutions here fall into a certain func-
tion space, the elements of which have derivatives of first order with respect to
x and of order 4 with respect to t. We then observe that the properties of these
solutions improve as the differential properties of the functions defining the equa-
tion or problem improve.

A qualitatively different situation holds for nonlinear equations. For them the
smoothness of the solutions and the solvability *‘in the large’’ of the boundary
value problems and of the Cauchy problem is determined not only by the smooth-
ness of the known functions a;; (x, t, u, p), a(x, t, u, p) making up the equation
but also by their behavior as u and p increase without limit. In § 3 of Chapter I
we cite a number of examples elucidating certain restrictions on this behavior,
the nonfulfilment of which implies a nonsolvability of these problems ‘‘in the
large.”’ And in subsequent chapters (Chapters V, VI, VII) it is proved that these
restrictions, together with a certain not large smoothness, are on the whole also
sufficient for the unique solvability of the basic boundary value problems and of
the Cauchy problem for quasi-linear equations.

The general plan of the. book is as follows. In Chapter I we present the basic
notation and terminology used in the book, a description of the main results proved
in it, and a number of examples inaicating the exactness of these results; finally,
we give a brief historical survey. In Chapter II we have assembled propositions
that are used throughout the book and describe the properties, not of the solutions
of any differential equations, but of arbitrary functions belonging to various func-

tion spaces or classes. It is perhaps better to treat this chapter as a reference on

DFor functions u(x, t) of a space Lq, (@) the norm

T

Lo
iy, ,, Q,='(J'(flul°dx)" dt) ;
0 Q

is finite.
&
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its different assertions. The main text begins with Chapter III. It and Chapter IV
are devoted to linear equations. In Chapters V and VI we investigate quasi-linear
equations. Finally, in Chapter VII we examine linear and quasi-linear systems' of
second order with common principal parts and give a survey of the results on gen-
eral boundary-value problems for linear parabolic systems, the most general of
those considered up to the present time. The main contents of each chapter can
be understood independently of the others.

The contents of all the chapters, except Chapter IV and parts of Chapters II
and VII, are based on the work of O. A. Lady¥enskaja and N. N. Ural'ceva. These
chapters were written by them. Chapter IV and §$8—10 of Chapter VII were writ-
ten by V. A. Solonnikov, who is responsible for many of the results in this part of
the book. "

The authors are extremely grateful to Academician V. I. Smirnov for having
looked over the manuscript of the entire book and having made a number of impor-
tant critical remarks and suggestions. They were taken into account during the
final revision. _

The authors exp;ess their heartfelt thanks to their colleagues and students
A. Treskunov, A. Oskolkov, M. Faddeev, I. Krol’, V. Matvee; and technician L. M.
Diku¥ina for their help in the preparation of the book. A particularly large amount
of quite expert assistance was rendered by A. Treskunov, a graduate student at
Leningrad University, who worked with us throughout the writing of the book and

obtained during this time some interesting results on linear equations (see Bibli-
ography).



Prefatory Note to the Translation

The active cooperation of the Russian authors has made it pos-
sible to bring the present translation up-to-date and to improve it in
several respects. Slight additions and corrections have been made
throughout, and some of the material has been entirely rewritten,
most notably Chapter Il $2 on embedding theorems, Chapter IV
§4 on certain supplementary theorems, and Chapter V $6 on solv-
ability of the first boundary problem. The translator and the edito-
rial staff wish to thank the Russian authors for their long-continued

and cordial assistance.
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CHAPTER I

INTRODUCTORY MATERIAL

This book is devoted to the basic linear and quasi-linear second-order partial
differential equations of parabolic type. For them the solvability of the basic
boundary value problems and of the Cauchy problem in various function spaces is
studied and investigations are carried out concerning the dependences of the
smoothness properties of the solutions of these equations on the known functions
making up the equations and on the properties of the other known functions in the
problems. We begin with a description of certain examples that permit one to out-
line with sufficient accuracy the contours of a possible theory for these questions,
and with an enumeration of the basic results of the present book. These sections
(§$ 3 and 4) may be usefully reread after making an acquaintance with Chapters
Il and IV. Preceding them (§2) is a description of the statements of the basic
problems for parabolic equations and an account of one of the basic properties
inherent in the solutions of parabolic equations of second order namely, in their
classical form, the maximum principle. Later on, both the statements of the problems
and the maximum principle acquire a different form, appropriate to the function
space containing the solutions being investigated. These modifications in the
classical form and the methods created for working with them led to success in

studying quasi-linear equations ‘‘in the large’’ and linear equations with bad coef-
ficients.

Although it can be read independently, the present book has much in common,
in regard to the methods of investigation, with the book by O. A. Lady¥enskaja
and N. N. Ural ‘ceva, ‘‘Linear and quasi-linear equations of elliptic type”’ [654].

All functions, arguments and parameters considered in this book are real. An
exception occurs with § §.4 and 18 of Chapter Ill and §8and 9 of Chapter VII,
where Fourier and Laplace transforms are used.



2" I. INTRODUCTORY MATERIAL

§1. BASIC NOTATION AND TERMINOLOGY
1. Abridged notation.
E_ is the n-dimensional euclidean space; x = (xl, veey, xn) is an arbitrary
point in it.
E, 41 1s the (n+ 1)-dimensional euclidean space; its points are denoted by
(x, t), where x is in E and ¢ isin (= o0, o).

 is a domain in E , i.e. an arbitrary open connected set of points of E . In.
all chapters except IV, unless otherwise stated, () is considered to be a bounded
domain. In Chapter IV the letter () denotes an arbitrary domain.

S is the boundary of (.
Q is the closure of , so that 0 =QUS.

K  is an arbitrary (open) ball in E of radius p, x, =mes K,, and o, is
the surface area of K.

Op = Kp nea.

Qp is the cylinder Q x (0, T), i.e. the set of points (x, t) of E, +1 With
x€Q,t€ (o, T).

Q' is an arbitrary open subset of Qp-

Sy is the lateral surface of @y, or more precisely the set of points (x, t)
of Enﬂ with x €S, t€[o, T]. .

Crp=SpUllx, 0): x€Q, ¢t =0l

So={(x, t): x €S, t=0} l"0=((z, t): x €0, t=0

Qil"z =Qx (e, <e<ey)

Q(p, 7) is an arbitrary cylinder of the form {(x, ¢): |x —x%| < p; tg<t<ty+h

Q(k, p, 7) is the set of all points (x, :) € Q(p, r) at which the investigated
function u(x, t) > k.

Q‘l(k) is the set of all points Q,l =Qx (0<e<t,), at which u(x, t) > k.

Vs s € 8y 8 0, Oy» y, @, B are positive constants, with a being assumed
to belong to the interval (0, 1).

v(t) is a positive nonincreasing continuous function defined for ¢ > 0.
p(¢) is a positive nondecreasing continuous function defined for ¢ > 0.
8£ is the Kronecker delta symbol: 8:: =1, 8{ =0 for i £ J.
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1

|x|=(é‘;l ;%)3 . x=|xP

] e

a
p=(Prs -oev Pa)e By =(Hgye s lie,) |p|=(‘§p3) -

n 3
pr=IpP |",l=.(2 "i,) :

i=1
o 2 2
ui—-lu‘P. an—(uﬁ) ’
1
n \E
.luxx| = <‘.;_‘ "?r‘x” 2
a(x, t, t, P)=06 (X1, ++y Xgo £, U Pra -+ s Pa)s
a(x, t, a, u,)=:a(x,. cove X b, 8y Bp on u,n).
ocs {u(x), O} is the oscillation of u(x) on , i.e. the difference between vrai

maxg () and vraimingu (). osclu(x, t); Qpl is defined analogously.

In the equations below we will encounter such expressions as
d
'Ex_l[a(x- t' u(x. t)- “x(xi t))]n

which mean that in calculating the derivative d/dx; it is necessary to take iato

account the presence of x; not only in the first group of arguments but also in the
other two, i.e. in the functions #(x, t) and u, (x. t), so that

d __ Oa da da
Ty 18 8o (x, ), 1, (x, f))]—'E-F;; ";,+0—ux; Uy ey

Here and elsewhere pairs of equal indices imply a summation from 1 to n; in
particular, =
n
oa_ da ¥
O %x,x, = o
Ouy, "B o oug, i

Sometimes, when it does not cause confusion, the symbol for total differ-
entiation d/dx; will be replaced by the more widely used symbol d/9x;. For ex-
ample, in a linear equation we usually write a term such as
(d/dxi)(a‘-l. (x, t)uxl, (x, t)) ip the form (a/éx..) (aii (x, t)u,.(x, t)), even though in
differentiating here one must take account of x; in both ail-(x, t) and u"i (x, t).

n is the outward (from 1) unit normal to S at each of its points; d/dn
,de?tes differentiation along n.
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In Chapter VII the notation p=-n is also used; v is the inward unit normal
to S.

A function “u (x) (oru(x, t)) is said to be finite in Q (in Q) if it is dif-
ferent from zero only on some compact set that is separated from the boundary of
Q (of Q) by a positive distance.

A function ((x) (or {(x, t)) is said to be @ cutting function for the domain
Q (for Q) if it is continuous in Q (in Qy), has first-order piecewise-continuous
bounded derivatives, vanishes on the boundary of this domain (on FT)’ and has
its values contained between zero and one.

2. Definitions of the basic function spaces. L_(Q) is the Banach space con-
sisting of all measurablefanctions on () that are gth-power (g > 1) summable on
Q. The norm in it is defined by the equalities

1
ll«ll,, Q=( f |u(x)[? dx)“ and |14 llq, g = vral max |u]
Q

Measurability and summability are to be understood everywhere in the sense
of Lebesgue. The elements of Lq (Q) are equivalence classes of the functions on
0.

Lq,, (QT) is the Banach space consisting of all measurable functions on QT
with a finite norm

T

L
el r, o, = (_f (flu(x. He dx)T dt)' :
OO \Q

where ¢ >1 and r > 1.

Lq,q (Q4) will be denoted by Lq (@), and the norm | -
g, 07:

Generalized derivatives are to be understood in the way that is now customary

in the majority of papers on differential equations. Different but equivalent defi-

nitions and their basic properties can be found, for example, in [112,Vol.V]
and [113a],

"q'q'QT by

WL Q) for 1 integral is the Banach space consisting of all elements of
Lq () having generalized derivatives of all forms up to order [ inclusively, that
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are gth-power summable on 1. The norm in W‘ll (Q) is defined by the equality

1
N W\
el a= 3 Ko @
where
e =3 1Dl o as

The symbol D{‘ denotes any derivative of u(x) with respect to x of order j,
while 2 denotes summation over all possible derivatives of u of order j. For
domains thh “not too bad’’ boundaries Wq (Q) coincides with the closure in the
norm (1.1) of the set of all functions that are infinitely differentiable in Q. This
will be true, for example, for domains with piecewise-smooth boundaries (a defi-
nition of which is given below). Sometimes W‘II is written in place of W; Q),
particularly if the domain () is subject to a further refinement.

I.l'f] () is the set of elements of W; (Q), that are finite in. Q.

ﬁ’q (9) is the subspace of W (Q) in which the set of all functions that are
mfmltely differentiable and finite in ) is dense. It is known that Wl Q) ¢
v (@). .

W;“(QT) for [ integral (¢ > 1) is the Banach space consisting of the ele-
ments of Lq (Q7) having generalized derivatives of the form D) D] with any r

and s satisfying the inequality 2r + s < 2/. The norm in it is defined by the
equality

g, = Z , KaNLg (1.3)

where

() — DD}, .
((u)> -/)” : “ ”q‘ QT (1.4)

The summation 2(2r+s=j) is taken over all nonnegative integers r and s satis-
fying the condition 2r + s = J.

Spaces W (Q) and Wl i/2 (Sy) with norintegral ! will be used in Chapters
IV and VII. The former space is defined in §2 of Chapter II, and the latter in
§3 of Chapter IL
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In addition to ng'[ (Q4), we will encounter two spaces with different ratios
of the upper indices:

W%’O(QT) is the Hilbert space with scalar product
0 g oy [+t
or
and W%'I(QT) is the Hilbert space with scalar product

(a, v)v;, 1 (@) = I (ll‘v —+ U, Vx, 4= u,o,) dx dt.
Qr

V,(@p) is the Banach space consisting of all elements of W%‘O(Q ) having
% finite norm

I“IQT= wuogfzr"“(x' t)“ﬂ, o+ lla, "z, o (1.5)

where here and below

I
T lls, &= I uldxadt.
or

V%’O(QT) is the Banach space consisting of all elements of V,(Q) that
are continuous in ¢ in the norm of Lz(ﬂ), with norm

|ulo, =  max_llutx, Ol o+llasl, o (1.6)

The continuity in ¢ of a function u(x, t) in the norm of sz«n means that
[l (x, £ + A2) = u (x, t)“f q — 0 for At — 0. The space VZ’O(QT) is obtained by
completing the set W%’ (QT) in the norm of V2 (QT).

V%'%(QT) is the subset of those elements u(x, t) of V%’O(QT) for which
T—h
f f R (w(x, t +h)—u(x, OPdx dt ——>0.
0 g

A zero over W%’O(QT), W;‘I(QT), VZ(Q‘I‘)’ V%’O(QT), V;’%(QT) means

that only those elemeats of these spaces are taken which vanish on 5.

We now define spaces consisting of functions that are continuous in the
sense of Hélder.
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We will say that a function u (x) defined in Q satisfies a Hélder condition in -
x with exponent @, a € (0, 1), and Holder constant (u)b) in the domain Q if

sup p~® osc (u; Q)= (1) < o0, (1.7)

where the supremum is taken over all connected components Q of all Q_with
@ < pg- If the boundary of the domain 1 is “‘not too bad’’ (for example, piecewise-
smooth without double points), then (u> b) can also be defined in another way, as

|8 —ux)] _
x.s.:l'%n lx—x'[® () (18}
[x=x' |<po

For domains with a two-piece boundary, for example for the domain
by, 2,): v | <1, |#,| <1 and x,#£0 for =] <%, definitions (1.7) and (1.8)
are not equivalent. In such cases we will adhere to the first definition.

We proceed to define the Holder spaces H' (%) and Hl’l/z(br). In them [ is

always a nonintegral positive number.

H' @) is the Banach space whose elements are continuous functions u(x) in

Q having in ) continuous derivatives up to order [!/] inclusively and a finite
value for the quantity

m
bajg = () + IZ_}O @y, (1.9)
() =|ul = Hax |a],

(u)f) = Z |D,u & o (u)(n Z(D"' )a m
Equality (1.9) defines the norm Mé’l) in Hl(n)

HY l/z(OT) is the Banach space of functions u (x, ¢) that are continuous in

Qp, together with all derivatives of ths-form DD for 2r + s < I, and have a
finite norm

where

Iul(l) —(ﬂ)") +_ z<a>(l) . (1.10)
where (a)(O) e or ot maxl ul.
W= 3 ID:D’ e
2+ 5= J)

@ o o HLS,

(U] R G U}
u - D;Du 3
( )x, Qr (2""32-“1)( t~Hx >x, Qr



