Computing Security &
Cryptography Handbook

Stephen Mason

Computing Security &
Cryptography Handbook

Edited b]y Stephen Mason

fﬂm
NTERNATIONAL

New Jersey

Published by Clanrye International,
55 Van Reypen Street,

Jersey City, NJ 07306, USA
www.clanryeinternational.com

Computing Security & Cryptography Handbook
Edited by Stephen Mason

© 2015 Clanrye International

International Standard Book Number: 978-1-63240-113-7 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Copyright for
all individual chapters remain with the respective authors as indicated. A wide variety of references
are listed. Permission and sources are indicated; for detailed attributions, please refer to the permis-
sions page. Reasonable efforts have been made to publish reliable data and information, but the au-
thors, editors and publisher cannot assume any responsibility for the validity of all materials or the
consequences of their use.

The publisher’s policy is to use permanent paper from mills that operate a sustainable forestry policy.
Furthermore, the publisher ensures that the text paper and cover boards used have met acceptable
environmental accreditation standards.

Trademark Notice: Registered trademark of products or corporate names are used only for explanation
and identification without intent to infringe.

Printed in China.

Computing Security & Cryptography Handbook

s, 75 22 58 #EPDFIE U7 iR) . www. ertongbook. com

Preface

This book presents some critical security challenges that are faced in today’s computing
world. It discusses, in detail, the defense mechanisms against these kinds of attacks with the
help of classical and modern approaches of cryptography and other defense mechanisms.
The book not only deals with theoretical and fundamental aspects of cryptography, but
also talks in length about different applications of cryptographic protocols and techniques
in designing computing and network security solutions. This book will prove itself to be
beneficial for researchers, engineers, graduate and doctoral students who are working in
the same and related field.

The information contained in this book is the result of intensive hard work done by
researchers in this field. All due efforts have been made to make this book serve as a
complete guiding source for students and researchers. The topics in this book have been
comprehensively explained to help readers understand the growing trends in the field.

I would like to thank the entire group of writers who made sincere efforts in this book and
my family who supported me in my efforts of working on this book. I take this opportunity
to thank all those who have been a guiding force throughout my life.

Editor

Contents

Part 1

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Part 2

Chapter 7

Preface
Cryptography and Security in Computing

Provably Secure Cryptographic Constructions
Sergey I. Nikolenko

Cryptographic Criteria on Vector Boolean Functions
José Antonio Alvarez-Cubero and Pedro J. Zufiria

Construction of Orthogonal Arrays of

Index Unity Using Logarithm Tables for Galois Fields
Jose Torres-Jimenez, Himer Avila-George,

Nelson Rangel-Valdez and Loreto Gonzalez-Hernandez

Malicious Cryptology and Mathematics
Eric Filiol

Elliptic Curve Cryptography and
Point Counting Algorithms
Hailiza Kamarulhaili and Liew Khang Jie

Division and Inversion Over Finite Fields
Abdulah Abdulah Zadeh

Applications of Cryptographic
Algorithms and Protocols

Scan-Based Side-Channel
Attack on the RSA Cryptosystem
Ryuta Nara, Masao Yanagisawa and Nozomu Togawa

VIl

23

43

63

91

117

131

133

VI Contents

Chapter 8

Chapter 9

Chapter 10

Chapter 11

PGP Protocol and Its Applications
Hilal M. Yousif Al-Bayatti,
Abdul Monem S. Rahma and Hala Bhjat Abdul Wahab

Secure and Privacy-Preserving Data
Aggregation Protocols for Wireless Sensor Networks
Jaydip Sen

Potential Applications of IPsec in
Next Generation Networks
Cristina-Elena Vintila

Comparative Analysis of Master-Key and
Interpretative Key Management (IKM) Frameworks
Saman Shojae Chaeikar,

Azizah Bt Abdul Manaf and Mazdak Zamani

Permissions

List of Contributors

149

171

203

227

Part 1

Cryptography and Security in Computing

Mo EE, T2 5E BEPDFIE V5) © www. ertongbook. com

Provably Secure Cryptographic Constructions

Sergey 1. Nikolenko
Steklov Mathematical Institute, St. Petersburg
Russia

1. Introduction
1.1 Cryptography: treading uncertain paths

Modern cryptography has virtually no provably secure constructions. Starting from the first
Diffie-Hellman key agreement protocol (Diffie & Hellman, 1976) and the first public key
cryptosystem RSA (Rivest et al., 1978), not a single public key cryptographic protocol has been
proven secure. Note, however, that there exist secure secret key protocols, e.g., the one-time
pad scheme (Shannon, 1949; Vernam, 1926); they can even achieve information-theoretic
security, but only if the secret key carries at least as much information as the message.

An unconditional proof of security for a public key protocol would be indeed hard to find,
since it would necessarily imply that P # NP. Consider, for instance, a one-way function,
ie., a function such that it is easy to compute but hard to invert. One-way functions are
basic cryptographic primitives; if there are no one-way functions, there is no public key
cryptography. The usual cryptographic definition requires that a one-way function can be
computed in polynomial time. Therefore, if we are given a preimage y € f'(x), we can, by
definition, verify in polynomial time that f(y) = x, so the inversion problem is actually in NP.
This means that in order to prove that a function is one-way, we have to prove that P#NP,
a rather daring feat to accomplish. A similar argument can be made for cryptosystems and
other cryptographic primitives; for example, the definition of a trapdoor function (Goldreich,
2001) explicitly requires an inversion witness to exist.

But the situation is worse: there are also no conditional proofs that might establish a connection
between natural structural assumptions (like P#ANP or BPP#NP) and cryptographic
security. Recent developments in lattice-based cryptosystems relate cryptographic security
to worst-case complexity, but they deal with problems unlikely to be NP-complete (Ajtai &
Dwork, 1997; Dwork, 1997; Regev, 2005; 2006).

An excellent summary of the state of our knowledge regarding these matters was given by
Impagliazzo (1995); although this paper is now more than 15 years old, we have not advanced
much in these basic questions. Impagliazzo describes five possible worlds - we live in exactly
one of them but do not know which one. He shows, in particular, that it may happen that
NP problems are hard even on average, but cryptography does not exist (Pessiland) or that
one-way functions exist but not public key cryptosystems (Minicrypt). !

! To learn the current state of affairs, we recommend to watch Impagliazzo's lecture at the 2009 workshop
“Complexity and Cryptography: Status of Impagliazzo’s Worlds”; video is available on the web.

4 Computing Security & Cryptography Handbook

Another angle that might yield an approach to cryptography relates to complete cryptographic
primitives. In regular complexity theory, much can be learned about complexity classes by
studying their complete representatives; for instance, one can study any of the numerous
well-defined combinatorial NP-complete problems, and any insight such as a fast algorithm
for solving any of them is likely to be easily transferrable to all other problems from the
class NP. In cryptography, however, the situation is worse. There exist known complete
cryptographic constructions, both one-way functions (Kojevnikov & Nikolenko, 2008; 2009;
Levin, 1986) and public key cryptosystems (Grigoriev et al., 2009; Harnik et al., 2005).
However, they are still mostly useless in that they are not really combinatorial (their hardness
relies on enumerating Turing machines) and they do not let us relate cryptographic security to
key assumptions of classical complexity theory. In short, it seems that modern cryptography
still has a very long way to go to provably secure constructions.

1.2 Asymptotics and hard bounds

Moreover, the asymptotic nature of cryptographic definitions (and definitions of complexity
theory in general) does not let us say anything about how hard it is to break a given
cryptographic protocol for keys of a certain fixed length. And this is exactly what
cryptography means in practice. For real life, it makes little sense to say that something is
asymptotically hard. Such a result may (and does) provide some intuition towards the fact
that an adversary will not be able to solve the problem, but no real guarantees are made:
why is RSA secure for 2048-bit numbers? Why cannot someone come up with a device that
breaks into all credit cards that use the same protocol with keys of the same length? There are
no theoretical obstacles here. In essence, asymptotic complexity is not something one really
wants to get out of cryptographic constructions. Ultimately, I do not care whether my credit
card’s protocol can or cannot be broken in the limit; I would be very happy if breaking my
specific issue of credit cards required constant time, but this constant was larger than the size
of the known Universe.

The proper computational model to prove this kind of properties is general circuit complexity
(see Section 2). This is the only computational model that can deal with specific bounds for
specific key lengths; for instance, different implementations of Turing machines may differ by
as much as a quadratic factor. Basic results in classical circuit complexity came in the 1980s
and earlier, many of them provided by Soviet mathematicians (Blum, 1984; Khrapchenko,
1971; Lupanov, 1965; Markov, 1964; Nechiporuk, 1966; Paul, 1977; Razborov, 1985; 1990;
Sholomov, 1969; Stockmeyer, 1977; 1987; Subbotovskaya, 1961; 1963; Yablonskii, 1957). Over
the last two decades, efforts in circuit complexity have been relocated mostly towards results
related to circuits with bounded depth and/or restricted set of functions computed in a node
(Ajtai, 1983; Cai, 1989; Furst et al., 1984; Hastad, 1987; Immerman, 1987; Razborov, 1987; 1995;
Smolensky, 1987; Yao, 1985; 1990). However, we need classical results for cryptographic
purposes because the bounds we want to prove in cryptography should hold in the most
general B, basis. It would be a very bold move to advertise a credit card as “secure against
adversaries who cannot use circuits of depth more than 3”.

1.3 Feebly secure cryptographic primitives

We cannot, at present, hope to prove security either in the “hard” sense of circuit complexity
or in the sense of classical cryptographic definitions (Goldreich, 2001; 2004; Goldwasser &
Bellare, 2001). However, if we are unable to prove a superpolynomial gap between the

Provably Secure Cryptographic Constructions 5

complexities of honest parties and adversaries, maybe we can prove at least some gap? Alain
Hiltgen (1992) managed to present a function that is twice (2 — o(1) times) harder to invert than
to compute. His example is a linear function over GF(2) with a matrix that has few non-zero
entries while the inverse matrix has many non-zero entries; the complexity gap follows
by a simple argument of Lamagna and Savage (Lamagna & Savage, 1973; Savage, 1976):
every bit of the output depends non-idly on many variables and all these bits correspond
to different functions, hence a lower bound on the complexity of computing them all together
(see Section 3.2). The model of computation here is the most general one: the number of gates
in a Boolean circuit that uses arbitrary binary Boolean gates. We have already noted that little
more could be expected for this model at present. For example, the best known lower bound
for general circuit complexity of a specific Boolean function is 3n — o(n) (Blum, 1984) even
though a simple counting argument proves that there exist plenty of Boolean functions with
circuit complexity > %2" (Wegener, 1987).

In this chapter, we briefly recount feebly one-way functions but primarily deal with another
feebly secure cryptographic primitive: namely, we present constructions of feebly trapdoor
functions. Of course, in order to obtain the result, we have to prove a lower bound on the circuit
complexity of a certain function. To do so, we use the gate elimination technique which dates
back to the 1970s and which has been used in proving virtually every single known bound in
general circuit complexity (Blum, 1984; Paul, 1977; Stockmeyer, 1977). New methods would
be of great interest; alas, there has been little progress in general circuit complexity since
Blum's result of 3n — o(n). A much simpler proof has been recently presented by Demenkov
& Kulikov (2011), but no improvement has been found yet.

We begin with linear constructions; in the linear case, we can actually nail gate elimination
down to several well-defined techniques that we present in Section 3.3. These techniques let
us present linear feebly trapdoor functions; the linear part of this chapter is based mostly on
(Davydow & Nikolenko, 2011; Hirsch & Nikolenko, 2008; 2009). For the nonlinear case, we
make use of a specific nonlinear feebly one-way function presented in (Hirsch et al., 2011;
Melanich, 2009).

2. Basic definitions
2.1 Boolean circuits

Boolean circuits (see, e.g., (Wegener, 1987)) represent one of the few computational models
that allow for proving specific rather than asymptotic lower bounds on the complexity. In
this model, a function’s complexity is defined as the minimal size of a circuit computing this
function. Circuits consist of gates, and gates can implement various Boolean functions.

We denote by By, the set of all 22" functions f : B" — B", where B = {0,1} is the field
with two elements,

Definition 1. Let () be a set of Boolean functions f : B" — B (m may differ for different f). Then
an Q-circuit is a directed acyclic labeled graph with vertices of two kinds:

* vertices of indegree O (vertices that no edges enter) labeled by one of the variables x1, . . ., x,,

* and vertices labeled by a function f € Q) with indegree equal to the arity of f.

Vertices of the first kind are called inputs or input variables; vertices of the second kind, gates. The
size of a circuit is the number of gates in it.

6 Computing Security & Cryptography Handbook

Y YA

y=x

4F|

—xlmrzﬁ«t;; —xz/\(xlvvr;) y—rz/\ (x1Vx3)
(a) b (c) (d)

Fig. 1. Simple circuits: (a) y = x1 & x2; (b) y = x1 ® x2 @ x3; (¢) a suboptimal circuit for
¥ = x2 A (x1 V x3); (d) an optimal one.

We usually speak of outputs of a circuit and draw them on pictures, but in theory, every gate
of an ()-circuit computes some Boolean function and can be considered as an output of the
circuit. The circuit complexity of a function f : B” — B™ in the basis (is denoted by Cq(f)
and is defined as the minimal size of an Q)-circuit that computes f (that has m gates which
compute the result of applying function f to input bits).

In order to get rid of unary gates, we will assume that a gate computes both its corresponding
function and its negation (the same applies to the inputs, too). Our model of computation
is given by Boolean circuits with arbitrary binary gates (this is known as general circuit
complexity); in other words, each gate of a circuit is labeled by one of 16 Boolean functions
from B, ;. Several simple examples of such circuits are shown on Fig. 1.

In what follows, we denote by C(f) the circuit complexity of f in the B; ; basis that consists of
all binary Boolean functions. We assume that each gate in this circuit depends of both inputs,
i.e., there are no gates marked by constants and unary functions Id and —. This can be done
without loss of generality because such gates are easy to exclude from a nontrivial circuit
without any increase in its size.

2.2 Feebly secure one-way functions

We want the size of circuits breaking our family of trapdoor functions to be larger than the
size of circuits that perform encoding. Following Hiltgen (1992; 1994; 1998), for every injective
function of n variables f, € By, we can define its measure of one-wayness as

1
(fn) = C((f';-)) (1)

The problem now becomes to find sequences of functions f = { fu };;_; with a large asymptotic
constant lim inf, .o Mg (fy), which Hiltgen calls f’s order of one-wayness.

Hiltgen (1992; 1994; 1998) presented several constructions of feebly secure one-way functions.
To give a flavour of his results, we recall a sample one-way function. Consider a function
f:B" — B" given by the following matrix:

——

=1

oo

oo

So
=

"~

1

fxyeenxn)=1:10: 1 1 .)
o . o

Xn

—
l=1=1
oo
Ll =]
(=1
s

Provably Secure Cryptographic Constructions 7

X1 X2 13 Xy v Xpo Xwel Xp
AT

Wi Y2 Y3 Y41 .VLZ’H-_'/nvf% }/:;—2 Yn-1 Yn

Fig. 2. Hiltgen's feebly one-way function of order 3: a circuit for f.

that is (we assume for simplicity that n is even),

XD Xii1, j=1...,n-1,
f,‘(X],..-,x”) = J) ’ 7 (3)
X1 Sxs Bxn, j=n
Straighforward computations show that f is invertible, and its inverse is given by
n
00..011..11 w2
10..011...11 s
11401111
- - S . }l"”J
Yi, ..o yn)=|ii.01i..11 2y, 4)
folyneeoyn) 110111011 Yy (
11...101...11 Y2
Vg2
11..100..01 :
Yo
that is,
" : n
B y1tB...‘:jByl',]){})(yﬂ+1@...®yn), j:]-/---rz/
fi 1(.‘/1'---'}/n) = ’ (5)

yl«:B...@yr_zx)r{b (y,-,laa...eby,,), =T

[t remains to invoke Proposition 6 (see below) to show that f ! requires at least [%ﬂj —1
gates to compute, while f can be obviously computed in n 4 1 gates. Fig. 2 shows a circuit
that computes f in n + 1 gates; Fig. 3, one of the optimal circuits for f~!. Therefore, f is
a feebly one-way function with order of security 3. For this particular function, inversion
becomes strictly harder than evaluation at n = 7 (eight gates to compute, nine to invert).

2.3 Feebly trapdoor candidates

In the context of feebly secure primitives, we have to give a more detailed definition of a
trapdoor function than the regular cryptographic definition (Goldreich, 2001): since we are
interested in constants here, we must pay attention to all the details. The following definition
does not say anything about the complexity and hardness of inversion, but merely sets up the
dimensions.

Definition 2. For given functions pi, ti, m,c¢ : N — IN, a feebly trapdoor candidate is a sequence
of triples of circuits
C = {(Seedy, Evaly, Inv,)};" |, where: (6)

8 Computing Security & Cryptography Handbook

n Y2 ¥3 cee Y Yy Yisr Yiv2 oo Yno1 Yn
[=@

e
x> X3 B A X Xz x§v+2 x§v+3 Xn ;1

Fig. 3. Hiltgen’s feebly one-way function of order % a circuit for f~1.

o {Seed,}; isa family of sampling circuits Seed, : B" — BPI(") x BH("),
e {Eval,}_, isa family of evaluation circuits Eval, : BPI") x B™(") — B<("), and
o {Inv, }%_, is a family of inversion circuits Inv, : B8(") x Be(m) — pr(n)
such that for every security parameter n, every seed s € B", and every input m € B"("),
Inv, (Seed,(s), Eval,(Seed, 1(s), m)) = m, (7)

where Seed,, 1 (s) and Seed,, 5(s) are the first pi(n) bits (“public information™) and the last ti(n) bits
(“trapdoor information”) of Seed,,(s), respectively.

Informally speaking, 7 is the security parameter (the length of the random seed), m(n) is
the length of the input to the function, c(n) is the length of the function’s output, and pi(n)
and ti(n) are lengths of the public and trapdoor information, respectively. We call these
functions “candidates” because Definition 2 does not imply any security, it merely sets up
the dimensions and provides correct inversion. In our constructions, m(n) = c¢(n) and
pi(n) = ti(n).

To find how secure a function is, one needs to know the size of the minimal circuit that could
invert the function without knowing the trapdoor information. In addition to the worst-case
complexity C(f), we introduce a stronger notion that we will use in this case.

Definition 3. We denote by Ci(f) the minimal size of a circuit that correctly computes a function
f € By,m on more than a fraction of its inputs (of length n). Obviously, Co(f) < C(f) for all f and
0<a<l

Definition 4. A circuit N breaks a feebly trapdoor candidate C = {Seed,, Evaly, Inv,, } on seed
length n with probability « if, for uniformly chosen seeds s € B" and inputs m € Bmn),

Pr [N(Seed,,‘l (s),Eval,(Seed, 1(s), m)) = m] > . (8)
(s,m)eld

