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Preface

The unique morphology of the filamentous fungi inevitably requires that
their development involves unique solutions to the problems of growth and
differentiation. In this volume we have aimed at bringing together concepts
and evidence from the variety of disciplines, viz. biochemistry, physiology,
genetics and cytology which can contribute to our understanding of fungal
development. Furthermore, we have aimed to avoid lengthy and detailed
descriptions of morphogenetic events in the fungi which can so easily cloud
rather than clarify the principles involved.

We believe that it is self evident that' a good understanding of fungal
development is essential to a complete appreciation of the behaviour of
fungi in an industrial or academic situation. This volume is an attempt to
provide research workers in each of these fields with an integrated perspec-
tive of the subject of fungal development. As with the previous two volumes
in this series we have aimed to make each chapter an entity in itself rather
than a survey of recent advances.

1977 J.E.S.
D.R.B.
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CHAPTER 1

Concepts of Differentiation
BARBARA E. WRIGHT

1.1 Introduction/page 1

1.2 The Accumulation of Fibroin in Bombyx mori/page 2

1.3 Chitin Synthesis in Saccharomyces cerevisiae and Mucor
rouxii/page 3

1.4 Glycogen phosphorylase and trehalose in Dictyostelium
discoideum/page 3 '

1.5 References/page 7

1.1 Introduction

The purpose of this introductory chapter is to arrive at a useful definition of
‘biochemical differentiation’. The approach will be to examine various types
of differentiation in order to see what they have in common, so that we may
distil or select those characteristics applicable in most cases. When the word
‘differentiation’ is in quotation marks, it refers to the word or symbol; when
not in quotation marks, it refers to the phenomenon being described. In the
latter case, I should be pointing to the phenomenon, rather than speaking or
writing the word—to avoid the semantic sin of identifying a symbol with the
object it represents. A symbol or definition must of necessity be an abstrac-
tion or selection of only a few of the countless characteristics (some
unknowable) which together constitute the phenomenon. A symbol is not
identical with the object. Those who argue about the ‘nature’ or ‘cause’ of (‘)
biochemical differentiation (’) should realize that such arguments usually
stem from a lack of awareness that different definitions are being used, or
from a confusion between, and/or identification of, symbol and
phenomenon.

Neither phenomena nor definitions can be right or wrong. Phenomena can
only be described, and a definition is arbitrarily made, based on criteria such
as conventionality, clarity and usefulness. For excellent discussions regard-
ing the nature of definitions see Lotka (1956) and Korzybski (1958). There
are different kinds of definition; the one we seek is called a connotative
definition, which describes selected characteristics common to similar
phenomena.

Phenomena referred to as examples of ‘differentiation’ can cover a very
broad range. Indeed, even enzyme induction in bacteria has been included.
For our purposes, however, more complex systems will be used because they
are more representative of what most investigators in our field would -
consider to be cases of ‘biochemical differentiation’. As we are interested
not in mere correlations, but in biochemical mechanisms underlying



2 CONCEPTS OF DIFFERENTIATION

‘differentiation’, examples have been chosen which offer at least some
indication as to the rate-limiting steps (i.e., critical variables) controlling the
specific transformation in question. For the purpose of the points to be
made, I have taken the liberty of making certain assumptions and simplifica-
tions regarding the systems to be described.

1.2 The Accumulation of Fibroin in Bombyx mori

The first and in certain respects simplest example is the accumulation of
the silk protein, fibroin, in the silk worm Bombyx mori (Suzuki, Gage &
Brown, 1972; Suzuki & Brown, 1972; Lizardi & Brown, 1975). When the
silk gland cells cease cell division, an enormous increase in the amount of
DNA occurs; when DNA synthesis stops, only fibroin (300 p g/cell) is made.
Elegant analyses have shown that the fibroin gene is not amplified in the silk
gland, but is present as a constant fraction of the haploid genome, and
_ represents 0.0022% of the DNA from all parts of the silk worm. The
messenger RNA (mRNA) for the fibroin protein has been isolated (80%—
90% pure) and analyzed by partial sequence analysis. The sequence found
could actually be predicted, because the protein has a simple primary
structure. This mRNA comprises about 1% of the total RNA in the silk
gland at the end of the larval life of the animal, when fibroin is the
predominant protein synthesized in this tissue. A simplified picture of the
sequence of events which culminates in the accumulation of fibroin protein
are summarized in Fig. 1.1.

tRNA
polysomes
Cellular (4) Amino M Fibroin
autolysis acids mRNA '

s

Diploid  (3) Polyploid - Fibroin
cell ization genes

Fig. 1.1 Sequential events essential to the accumulation of silk protein (fibroin) in
Bombyx mori.

Cellular autolysis, which supplies amino acid precursors for fibroin synth-
esis (4 in Fig. 1.1) and polyploidization in the silk gland cells, which results in
ten times more DNA and hence fibroin gene per cell (3 of Fig. 1.1), occur
many days prior to fibroin accumulation (1 of Fig. 1.1). Thus, we shall
assume that these events are not rate-limiting when fibroin accumulates, and
that the content and activities of cellular tRNA and polysomes are also
optimal for the protein synthesis which will occur. Presumably, the critical
event occurring durmg the 3-4 days prior to fibroin accumulation is the
production of 10° molecules of mRNA by each gene (2 of Fig. 1.1). Each
mRNA molecule is then translated into 10° silk proiein molecules during the
last 4 days of larval life (1 of Fig. 1.1). Thus, the critical variable controlling
the synthesis and accumulation of this structural protein is gene activation.
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1.3 Chitin Synthesis in Saccharomyces cerevisiae and Mucor rouxii

The next example to be considered is chitin synthesis during septum
formation in the budding yeast, Saccharomyces cerevisiae (Cabib & Farkas,
1971; Cabib & Ulane, 1973) and during hyphal or cell wall growth in the
mould Mucor rouxii (Bartnicki-Garcia & Lippmann, 1972; Bartnicki-
Garcia, 1973; Ruiz-Herrera & Bartnicki-Garcia, 1974). In both systems,
the enzyme is present largely in an inactive state and can be activated by an
activating factor (AF) or proteolytic enzyme (2 of Fig. 1.2). The protease,
AF, is liberated from vesicles at the site of septum formation and the inactive
enzyme or zymogen is then transformed to active chitin synthase.

Hypha formation Hypha and septum formation
UDP-Glc NAc
Cell (4) Broken Zymogen (2) Chitin )
wall  ytic microfibrils Activating Synthase
enzymes factor
Chitin+UDP
(5) (3)

Fig. 1.2 Prior events necessary to the accumulation of chitin in Mucor rouxii and
Saccharomyces cerevisiae.

In the case of hyphal growth, presumptive evidence has been obtained for
the critical role of wall lysis coupled with synthesis. Lytic enzymes attack the
microfibrillar skeleton by splitting either inter- or intramolecular bonds,
thus facilitating the extension of old chains or the production of new ones (4
of Fig. 1.2).

In the case of septum formation, the total amount of chitin synthase, as
measured after proteolytic activation, is constant, regardless of growth
medium, growth phase or stage of the cell cycle. Therefore, the critical
variables for chitin synthesis with respect to this enzyme do not involve gene
activation, mRNA synthesis or stabilization. (Zymogen and/or active
enzyme may well be turning over, but that would be irrelevant in our present
context, as inactive and active enzyme concentration is a constant before and
during septum formation). The AF-carrying vesicle fuses with the plasma
membrane at the site of septum formation, resulting in the transformation of
zymogen to active enzyme. Thus, the production of broken microfibrils (4 of
Fig. 1.2) as ‘primers’ for new synthesis and the liberation of an activating
factor (3 of Fig. 1.2) are the critical variables controlling structural polysac-
charide formation during differentiation in these two systems.

1.4 Glycogen phosphorylase and trehalose in Dictyostelium discoideum

The last two examples are taken from the cellular slime mould, Dictyo-
stelium discoideum, and were chosen because they involve two other kinds of
products of ‘differentiation’: an enzyme (glycogen phosphorylase) and a



