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PREFACE

Early in 1964 Prof. Norbert Wiener came to Amsterdam to act as visiting
professor in cybernetics at the Central Institute for Brain Research.

During the first month of his stay we discussed in great detail the publi-
cation of a second and a third volume in the series Progress in Biocyber-
netics. In the course of the conversation with some senior members of our
staff we decided to publish the second volume of the series as a celebration
volume, marking the occasion of Prof. Wiener’s 70th birthday in November
1964. We decided to let him choose the contributors for two celebration
volumes (volume 17 of our series Progress in Brain Research was also meant
to be a Festschrift for Norbert Wiener, containing in particular papers
related to the nervous system) without letting him know that the contribu-
tors were asked to write a survey of their work in honour to the great
pioneer of cybernetics.

Due to the untimely death of Norbert Wiener in March 1964 we had to
change the celebration volume into a memorial volume.

In this volume a series of contributions are assembled which give examples
of the wide application of cybernetics to various areas of biology and med-
icine. The papers are either original contributions, or reviews of significant
applications of cybernetics to various areas of the biological sciences. The
scientists are all outstanding in their field and have in the past made
important contributions to biocybernetics.

J. P. SCHADE
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THE SMOOTHING AND FILTERING OF
TWO-DIMENSIONAL IMAGES

DENNIS GABOR

Department of Applied Electron Physics, Imperial College,
University of London, London (Great Britain)

It is meet and right on this occasion to turn one’s thoughts to Norbert
Wiener’s monumental early work on the Extrapolation, Interpolation and
Smoothing of Stationary Times Series (1949) and to consider a line which
branches off from it, as a natural extension, but which so far has received
far too little attention.

Two-dimensional images suffer from distortion and noise just as much as
one-dimensional messages. In television a major part of the problem is
one-dimensional. A re-distortion method for television signals was dem-
onstrated by Goldmark and Hollywood in 1951, under the name of
‘crispening’. This was extended to two-dimensional images by Kovasznay
and Joseph in 1955, who showed that complete re-distortion is possible in
principle if each picture point is blurred by a diffusion process. The first
term in their correcting series is the Laplacian of the brightness, and to
this point the correction could be realised experimentally, with impressive
results. However, quite apart from instrumental difficulties, the Kovasznay-
Joseph series could not be continued indefinitely because it would soon start
to amplify picture noise to an intolerable extent.

I am not aware of attempts to tackle picture noise in two dimensions,
though the problem is of immense practical importance. Geneticists are
very worried about the possible cumulative effects of radiography, and they
insist on a minimum of radiograms, especially in pregnancy, with minimal
doses of X-rays. This leads logically to radiograms with as few photons as are
required to convey the information. Professor W. V. Mayneord, who first
drew my attention to this problem, has constructed a scanning device, in
which hardly a single X-ray photon need be wasted, but which naturally
gives very noisy pictures. Similar problems, though of less urgency, arise in
the electron microscopy of radiation-sensitive objects, and also in photo-
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2 DENNIS GABOR

graphy and television transmission under conditions of very restricted
illumination. It therefore appears worthwhile to consider the problem of
smoothing such noisy pictures with a maximum extraction of information.

So little appears to have been done in this field, that I feel justified in
attacking it here in a somewhat light-handed way, disregarding all mathe-
matical rigour, and not taking ‘optimum’ solutions too seriously. I could
hardly do otherwise, because from the start we lack the solid foundation
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Fig. 1. Image elements and their two-dimensional Fourier spectra.



TWO-DIMENSIONAL IMAGES 3

of the Wiener-Shannon communication theory: the probability pattern of
messages. The situation is somewhat similar to the one in the processing
of speech, in which little headway has been made in fifteen years, because we
have not yet succeeded in extracting the characteristics of meaningful sounds
from the enormous variety of possible sounds. Superficially it appears even
worse, because an interval with 100 Nyquist samples, each capable of 10
distinguishable levels has 10190 possible configurations, but this is compar-
able to a picture area containing 100 x 100 independent elements with
10 levels each, which has 1010000 possible states. In reality the situation
is not quite so bad. The reasons for my optimism are explained in Fig. 1.
At the left-hand side I have shown certain shapes in the image plane x, y in
a small field which may be called the processing area. At the right-hand
side I have shown the absolute values of the amplitude in their Fourier
transforms, in a Fourier plane &, #. If the image is a transparency in a
microscope and is illuminated with plane monochromatic waves parallel
to the optic axis, the Fourier transform appears physically as the light
amplitude in the rear focal plane of the objective. For a start the Fourier
plane may be limited only by a circular aperture corresponding to the
maximum spatial frequency which the optical system can transmit.

Significant shapes are very rarely composed of independent dots. I will
leave this rare case out of account, and consider rather the far more frequent
shapes shown below the first; a straight line, an arc, a contour and a bundle
of (not striated!) fibres. If we construct the two-dimensional Fourier spectra
of these shapes, we see that all four are restricted to a small fraction of the
Fourier plane; to a more or less narrow strip. This strip always passes
through the centre of the Fourier plane, corresponding to zero spatial
frequencies, but its direction varies. This at once shows up a significant
difference between the Wiener—Kolmogoroff one-dimensional filtering
theory and the two-dimensional case: Even the most primitive two-dimen-
sional filter must be adaptive. It must adapt itself to the principal direction
in that part of the image which we take as the unit of processing.

The choice of this processing area is of course a very important one for
the success of the operation. It must be significantly larger than the re-
solution area; large enough to recognize simple shapes such as those shown,
but not so large as to admit more complicated ones except in rare cases, and
it must of course contain a sufficiently large number of elementary pulses,
(which we will simply call ‘photons’) to make recognition of the shapes
possible. In an ideal machine the size of this area would itself be adaptable;
small where the photon density is large, and vice versa. The human eye

Referenges p. 9



4 DENNIS GABOR

undoubtedly makes use of such adaptive elementary areas, but it does much
more than this. We cannot follow it here in all its perfection. In the present
analysis we can consider the elementary processing area as a constant, but
we compensate to some extent for this imperfection, because we use the
elementary area for obtaining only one datum; the most probable density
at its centre.

FIRST ORDER FILTER

OPTIMUM FILTER

APPROXIMATE
INTEGRATING MASK SECOND ORDER FILTER

Fig. 2. Smoothing and filtering a noisy image.

In Fig. 2 we face the problem of extracting this datum from the noise.
Strictly speaking this is the fundamental problem of statistics; ‘what is
the probability distribution of which the given image is a sample?. But a
statistical approach is unavailing; the number of hypotheses to be tested
is too overwhelming. I prefer a step-by-step approach which starts with
‘first order smoothing’. This is exactly the same as what the eye does when
presented with a noise image. We either step back, until the noise dots do
not appear separate, or we look at it through half-closed eyelids.

Mathematically this means that we replace a noise dot at xo, yo by some
smoothing unit function u(x — xp, y — yo), for instance by the Gaussian
function
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u = (k*n/m) exp {— kn [(x — x0)* + (y — »0)*]} (6]

where 7 is the number of photons per unit area and k is a numerical factor
of the order unity. This could be determined for instance in such a way that
if the n dots are distributed in a regular hexagonal pattern the minimum
between them just vanishes. Selecting the optimum smoothing function
is of course quite a study in itself, but we will not pursue it further, because
it is only a first step in our process. In the first row in Fig. 2 I have shown
a random pattern of dots and indicated its spectrum and the ‘first order
aperture’. If the unit smoothing function is Gaussian, the spectral aperture
is also Gaussian; it has been shown in Fig. 2 as sharp only for simplicity.

The second row in Fig. 2 shows an example of a noisy image and its
Fourier spectrum. It is seen that something has been achieved by considering
the Fourier transform instead of the image. While the image itself can be said
to be ‘composed of noise’, in the Fourier representation this has become
‘background noise’. With our visual intelligence we could draw a contour
around the significant part of the spectrum, and thereby exclude most of
the noise. In principle a machine could do this too, for instance the contour
enhancer of Kovasznay and Joseph, if it is given certain instructions. But
for the present I do not want to aim too high — a machine capable of such
a high degree of intelligent discrimination might defeat itself by its com-
plexity — and propose a simpler process.

The next stage in this process is to reprint the original noisy image with its
smoothing function, that is to say replace it by the amplitude

N
flxy) = % u(x — Xm, ¥y — ym) (2)

summed over all photons in the processing area. It is advantageous to give
the processing area washed-out instead of sharp limits, for instance by
limiting this too by a Gaussian aperture, as a sharp image field gives a
system of circular fringes in the Fourier plane, which present an unnecessary
complication. It is also advantageous to consider not the brightness, (or
blackness,) of the image as the ‘amplitude’, but its square root, and in what
follows, we will use the term in this sense.

Though the smoothing has reduced the noise in the picture, and has con-
tracted the area in the Fourier plane, it has not made the recognition of the
contours of the significant area in the spectrum any easier. I propose there-
fore a less ambitious method, which at least has the advantage that it leads
to not too complicated instructions.

I propose to select the significant area in the Fourier plane by determining

References p. 9



6 DENNIS GABOR

the mean square frequency as a function of the direction. For simplicity I
write down the definition and certain alternative expressions of the mean
square frequency in one direction only. Let f(x) be the amplitude and F(£)
its Fourier transform

fo = [T Foemtas PO = [ fwe-tmstax 6
then the mean square frequency —5_2 is (Gzibor, 1946),
© © dzf @ 7 df \2
_ e e e e "
- o = 2 w© - 2 @
f F* Fd¢ 5 j £* fdx ) J' frdx

The last transformation is valid if f or df/dx vanish at infinity, or (as in our
case) at some finite boundaries. The denominator is the total brightness
(or blackness) in the interval which is also a measure of the total pulse
number in it. Thus the mean square frequency is essentially the mean square
gradient of the amplitude. (This is similar to, but not quite the same as,
what Cherry and Gouriet (1953) have called ‘picture detail’ in a television
line, because they have used the brightness signal instead of the amplitude,
which is its square root.) =
In two dimensions the mean square frequency p2 in a direction 6

o=E&cosf + nsinf

is. conveniently expressed in the form

Tz:(ln){[ f2dxdy %[j ( ) dXdy] -

© f D
-+ [ZJ (f f) dxdy:l sinfl. cosf + [f ( ) drdy:l sm20' (©)
—w \0X dy
This has the form
0% = A cos20 + Bsin%0 4 2Csin 0. cos 6 6)
If we represent the root mean square frequency as a radius vector in the

&, n plane this is a curve of the fourth order, which is an approximation to
the optimum mask in the Fourier plane. It is more convenient to place the

mask into the object plane, because if for E we substitute its reciprocal
r2 = 1/p% we obtain an ellipse
Ax?® + By? + 2C xy = constant (7
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1 propose therefore to take as the second smoothing filter a Gaussian mask,
with the transmission

exp {— 7% [A(x — x0)® + B(y — y0)® + 2C(x — x0) (y — »0)1} ®

which is so determined that in any direction 6 the root mean square fre-
quency is transmitted with 1/e of the transmission for zero frequency. As
shown in Fig. 2, this mask is narrow at right angles to the contour, where
we want to transmit high spatial frequencies, and long parallel to it, where
the frequencies are low. ’

IMAGE PLANE

PHOTOGRAPHIC PLATE

FOURIER PLANE
ADJUSTABLE APERTURE

OBJECTIVE

PROCESSING L OBJECT PLANE
AREA /4“1////‘

Fig. 3. Realisation of the first smoothing by a photographic process.

It remains now to show that this smoothing process can be carried out
with not too complicated instrumentation. For the first smoothing I propose
an optical process, as illustrated in Fig. 3. The starting point is a transparency
which is introduced in the object plane of an optical system such as a
microscope, and is illuminated with monochromatic light, parallel to the
axis. This is scanned with an aperture the size of the ‘processing area’. The
Fourier plane, that is to say the rear focal plane of the objective, contains
an adjustable aperture centered on theaxis. By eqn. (1) the area of this aper-
ture is made proportional to the density of photons in the processing area,
up to the maximum aperture of the optical system. This can be achieved by

References p. 9



8 DENNIS GABOR

servoing the aperture from a photometer, which measures the transmitted
light. The aperture can be made approximately ‘Gaussian’ by the simple
trick of arranging it a little off the Fourier plane. In this way we obtain a
photograph, which is smoothed to the extent that the ‘photons’ do not
appear any more as separate dots.

Fig. 4. Circling scan.

The next step is determining the coefficients 4, B and C in eqn. (8) from
eqn. (5). I propose projecting the transparency on the face of an image
camera, which is electronically scanned with a finely focused beam, in the
way as illustrated in Fig. 4. The scanning point rotates in a small circle of
radius r with a high angular frequency w, and progresses slowly in the line
direction. The process is simplest if the photograph was taken with a ‘gamma’
of 0.5, as in this case the transmitted light is proportional to the square
root of the original brightness, but the square root can be also produced
electronically. The quantity read off by the electron beam is then

of of .
F=f(xy) +r (—— cos wt + ——sin wt) (9)
dx dy

and this is processed as follows:

Filtering out the high frequency w gives f(x,y). This is squared and inte-
grated in the processing area, giving the denominator in eqn. (5).

Squaring F and filtering out the high frequencies w and 2w gives

D 2 b} 2
rev () +(5) ] o)
Multiplying the square of F by cos 2w? and filtering afterwards gives
A \2 A \2
2 - R SECG CHTS
ale2 Rl 8 a
Multiplying by sin 2wt and filtering gives
Y

dx dy

(12)

From the three quantities 10, 11 and 12 a computor coupled to the image
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camera can compute the integrands in the numerator of eqn. (5) and, after
integration, by division with the total brightness also the quantities 4, B, C
It can then, if it has stored the values f(x,y) in the processing area, calculate
the most probable value of f(xo, yo) by multiplication with the mask function
8 and a final integration over the processing area. This is fed into a display
device, for instance a cathode-ray tube, which displays the twice processed
image.

Thus, by a combination of optical devices, electron cameras and fast
computors the smoothing process which I have proposed can be carried out.
It is also obvious that nothing less than saving humanity from degeneration
by radiography ceuld ever justify a process of such complication, — except
perhaps military interests! For the moment considerations such as those
sketched out here have at any rate one merit. They make us feel due respect
for the brain plus its associated computor which carries out in a flash such
operations, and a lot more besides.

SUMMARY

In the great majority of two-dimensional images the objects of interest are
not points, but contours. This feature enables us to lift them out of a noisy
background (photon noise or photographic grain) by a two-stage process.
In the first stage, the noise is smoothed by a ‘first order spectral filter’, so
adjusted that the noise dots optimally merge. In the second stage the
direction of the contour is recognised and an anisotropic spectral filter is
applied such that the definition is poor in the direction of the contour, and
as good as possible at right angles to it. A scanning method operating with
a cycloidal scan is proposed, and a mathematical process is described which
allows computing the second filter and correcting the image in a continuous
operation.
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CONSTRAINT ANALYSIS OF MANY-DIMENSIONAL
RELATIONS

W. ROSS ASHBY

University of Illinois, College of Engineering, Urbana, Ill. (U.S.A.)

That this article should be offered as a tribute to Norbert Wiener is specially
appropriate, for it takes as basis an observation of his that has not yet shown,
I feel sure, its full fertility. I refer to his original suggestion (Wiener, 1914)
that a ‘relation’, previously regarded as somewhat metaphysical, be identi-
fied, at least for operational purposes, with the set of those n-tuples that
satisfy the relation. At one stroke the ‘relation’ becomes an ordinary mathe-
matical object that can be subjected to the ordinary mathematical oper-
ations, even when the relation is wholly arbitrary.

To the biologist, the freedom that allows it to be wholly arbitrary is most
welcome, for in his science, though relations are of the greatest importance,
they seldom have the tidiness common to more formal mathematics.

The attempt to apply Relation Theory to the biological sciences soon runs
into great difficulties however. As soon as the biologist attempts to deal
with realistically large numbers (e.g. with 1010 nerve cells) or with re-
alistically intricate patterns of interaction (e.g. those between species in
the Amazon jungle) the combinatorial possibilities soon generate fantas-
tically large numbers; equally fantastic is the quantity of information-pro-
cessing demanded of any system (cerebral or electronic) that would handle
the questions involved. Exponentials, factorials, or even more explosively
increasing functions appear. Bremermann (1962) has shown that no com-
puter made of matter, and therefore subject to the mass-energy relation
and to Heisenbergian uncertainty, can possibly process more than 1.4 x 1047
bits per g per sec; so 1079, say, is certainly an absolute upper bound to what
is practical. Yet even the simplest problems with more than a few variables
and more than infinitesimal interaction generate numbers vastly greater
than 1070, An example is given below. Any science, such as cybernetics,
that would treat large systems with strong interactions, urgently needs
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methods by which the ‘excessively complex can be reduced to complexities
that are within our resources. In this paper is described one such method.

The method is based.on the common observation that when the number of
variables is large — a thousand and over, say — many of the significant
relations are not really intricate to the full degree, but are really built out of
simpler relations. In dynamics, for instance, the linear system, both common
and important, has the peculiarity that the complicated output evoked by
a complicated input can be found by simply adding a number of simple
outputs, each evoked by a simple input. Thus in this case the whole output-
input relation is really composed of many simple relations that combine only
by adding. The parts of the system interact, but not the sub-relations.

Again, a camera lens with ten elements and fifteen surfaces at first seems
optically very complex; yet in fact the total effect, from incident ray to
emergent ray, can be obtained by merely repeating one fernary relation
(incident ray/surface/refracted ray) fifteen times in succession. Thus the lens
designer is able to avoid the fantastic combinatorial possibilities initially
presented by the 15-variable relation.

Not only the physical sciences but everyday life shows the same feature.
‘The Law’, as it affects John Citizen, has hundreds, even thousands, of
variables. Yet it can, in fact, be dealt with piecemeal; for it is built by the
intersection of such sub-relations as: Drivers of age x may drive only auto-
mobiles of class y; Stores selling goods p must be closed on days g.

The set of all events that are ‘legal’ is then obtained by simple compounding
of all the sub-relations, each of which uses only a tiny fraction of the totality
of variables.

An indication of what threatens may emphasize the point here. If there are
n variables, and each variable can take k values, the number of relations
possible (e.g. of Laws that J. C. may face), as subsets of the product set, is

26™

As a function of n, it is an exponential of an exponential, a rate of increase
vastly more ‘explosive’ than those commonly encountered in other branches
of science. If k is merely 10, for instance, by the time » has risen to five (well
below the 15 of the ‘optical’ example) the number of relations has risen to
about 1030 000, 3 number that shows how intensely restrictive Bremermann’s
limit really is. Let us then consider how one complex n-ary relation may be
reduced to a set of simpler relations.

When the dimensions are 2, the relation, as a subset of .a product-set
E x F, has only the simplifying possibility that it is itself a product set,

References p. 18



