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Preface

Recent advanced communication and information technologies have attracted our
attention to developments of highly dependable, strongly resilient, and energy-
efficient systems with applications to intelligent transportation systems (ITS), smart
grids, high-level medical diagnosis/treatment systems, and so on. Such systems in
general involve complex behavior induced by interactions among subsystems, and
complex network structure as well as a large number of components. We need to
analyze such complex behavior for capturing the intrinsic properties of the systems
and to design control systems for realizing the desirable behavior. Both dynamical
systems theory and control systems theory will play indispensable and central roles
in addressing such issues.

Dynamical systems theory originated from Newton’s motion equations in the
seventeenth century, and has been founded by Poincaré’s great contributions late in
the nineteenth century. After that, various mathematical methods such as ergodic
theory, stability theory of periodic solutions including equilibrium points, and
bifurcation theory for nonlinear dynamical systems have been developed, and since
the late 1970s, they have been extended to different research topics on more
complex phenomena/control such as bifurcations to chaos, chaos control, and chaos
synchronization.

On the other hand, James Watt’s steam engine at the industrial revolution in the
eighteenth century has opened the gate to feedback control, and Maxwell’s stability
analysis late in the nineteenth century, which theoretically analyzed the instability
phenomena of steam engines, was the occasion of developing control systems
theory. Continuing upon classical control theory dealing with control system design
mainly in the frequency domain since the 1920s, modern control theory has been
advancing since the 1960s, which enables us to analyze controllability/observability
and to design optimal control by means of state equations in the time domain.
Moreover, a deep understanding on robustness of the system behavior for dynamic
uncertainty including unmodeled dynamics in addition to parametric uncertainty
has been gained, and then robust control theory has been developed since the
1980s.



vi Preface

The above two research fields, however, have been developing almost inde-
pendently so far, although there have been several successes to be related in both
fields such as Pontryagin’s maximum principle and R.E. Kalman’s pioneering
contribution on chaos and control theory. The main focus in dynamical systems
theory is nonlinear autonomous dynamics with a kind of unstable phenomena like
bifurcations and chaos, while the focus in control systems theory is feedback sta-
bilization of linear non-autonomous dynamics at an equilibrium point. This moti-
vates us to develop a new paradigm on analysis and control of complex/large-scale
dynamical systems throughout collaborative research between dynamical systems
theory and control systems theory.

This book, which is the first trial toward developments of such a new paradigm,
presents fundamental and theoretical breakthroughs on analysis and control of
complex/large-scale dynamical systems toward their applications to various engi-
neering fields. In particular, this book focuses on the following three topics:

1. Analysis and control of bifurcation under model uncertainty.

2. Analysis and control of complex behavior including quasi-periodic/chaotic
orbits.

3. Modeling of network complexity emerging from dynamical interaction among
subsystems.

According to the above three topics, this book is organized as follows: In Part I,
robust bifurcation analysis, which deals with bifurcation analysis for dynamical
systems subject to uncertainty due to unmodeled dynamics, is presented and various
kinds of bifurcation control methods based on the degree of stability are proposed.
Part II begins with the analysis of chaotic behavior of triangle-folding maps, and
presents novel attempts for controlling various kinds of complex behavior, namely
feedback stabilization of quasi-periodic orbits and spatial patterns, chaos control,
ultra-discretization based control, and control of unstabilizable switched systems.
Finally, Part III includes research topics on network model reduction and network
structure identification toward control of large-scale network systems.

This book can be beneficial to mathematicians, physicists, biophysicist as well as
researchers on nonlinear science and control engineering for a better fundamental
understanding of analysis and control synthesis of such complex systems.

We would like to thank the contributors: Shun-ichi Azuma, Ken’ichi Fujimoto,
Tomohisa Hayakawa, Yoshito Hirata, Natsuhiro Ichinose, Masaki Inoue, Daisuke
Ito, Masato Ishikawa, Takayuki Ishizaki, Kenji Kashima, Takuto Kita, Hiroyuki
Kitajima, Miki U. Kobayashi, Mio Kobayashi, Motomasa Komuro, Takuji Kou-
saka, Jun Nishimura, Toshiyuki Ogawa, Yasuaki Oishi, Masayasu Suzuki, Tomomi
Takegami, and Tetsuya Yoshinaga for writing excellent chapters.

This book is the outcome of the Japanese Research Project “the Aihara Inno-
vative Mathematical Modelling Project (2010.3-2014.3)”, one of top 30 projects of
“Funding Program for World-Leading Innovative R&D on Science and Technology
(FIRST Program)” initiated by the Council for Science and Technology Policy
(CSTP) in Japan. We would also like to express our sincere gratitude to all
members of the international advisory board of this project for their fruitful
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suggestions and encouragements toward the developments of this project: Shun-ichi
Amari, Miwako Doi, Hiroshi Fujii, Celso Grebogi, Seiichi Ishizu, Kunihiko
Kaneko, Hiroshi Kawakami, Hidenori Kimura, Yoshiki Kuramoto, Jiirgen Kurths,
Henk Nijmeijer, Hugh Robinson, Ichiro Tsuda, Keiji Yamagami, and James
A. Yorke.

Tokyo, January 2015 Kazuyuki Aihara
Jun-ichi Imura
Tetsushi Ueta
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Chapter 1
Dynamic Robust Bifurcation Analysis

Masaki Inoue, Jun-ichi Imura, Kenji Kashima and Kazuyuki Aihara

1.1 Introduction

In dynamical systems theory, bifurcation phenomena have been studied extensively
[1-3]. Bifurcation is a phenomenon whereby a slight parametric perturbation in a
dynamical system produces qualitative changes in structure of the solutions. It can be
interpreted as bifurcation that because of a slight parameter change a stable equilib-
rium of differential equations is suddenly destabilized, and a stable periodic orbit can
arise near the equilibrium. In order to analyze such phenomena, bifurcation theory
has been studied and widely used for analysis and synthesis of complex behavior in
many research fields; systems biology and synthetic biology [4—14], power system
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4 M. Inoue et al.

analysis [ 15-18], epidemic model analysis [19-22], and so on. For example, bifurca-
tion theory has contributed to recent breakthroughs in systems biology and synthetic
biology. Bifurcation analysis methods have been adopted to study the functions or
characteristics of artificial bio-molecular systems, such as bio-molecular oscillators
[4, 10, 11] and bio-molecular switches [5, 9, 14]. In addition, the robustness of such
functions is identified with the volume of a parameter region in which the system
has oscillatory property or bistable equilibria.

Conventional bifurcation theory is not always applicable to the analysis and syn-
thesis of dynamical systems with uncertainties. Bifurcation analysis methods assume
that mathematical models such as differential equations are completely known.
Hence, they are not applicable to dynamical systems with uncertainties, in particular,
large dynamic uncertainties . However, practical systems in the real world inevitably
involve not only static but dynamic uncertainties [23, 24]. In order to apply the the-
ory to such real-world systems, bifurcation analysis methods for uncertain dynamical
systems are required.

In this chapter, we study local bifurcation of an equilibrium for systems with
dynamic uncertainties. Note that a bifurcation point, i.e., a parameter value on which
bifurcation occurs, depends on each model in general. If a system contains uncer-
tainties and is described by a model set, we cannot find the specific bifurcation point.
Therefore, we evaluate the potential bifurcation region: the parameter region that con-
sists of all possible bifurcation points for a given model set. In other words, the region
consists of all parameter points on which bifurcation can potentially occur. Evaluat-
ing the potential bifurcation region is referred to as the dynamic robust bifurcation
analysis problem in this chapter. To this end, we first propose a condition for exis-
tence of equilibria independently of uncertainties and evaluate their location. Then,
we derive a condition for robust hyperbolicity of potential equilibrium points, which
implies that the dimension of unstable manifolds is independent of uncertainties.
We consider parameter-dependent nonlinear systems with dynamic uncertainties,
and using the robust hyperbolicity condition we identify the region that contains all
potential bifurcation points. Finally, illustrative examples for robustness analysis of
normal forms for various types of bifurcation are presented.

Notation: The symbols {-} and p{-} represent the maximum singular value and
the spectrum radius of a matrix, respectively. RH is the space that consists of all
proper and complex rational stable transfer function matrices. The H, norm and L«
norm of a linear system § are defined by

ISIp, := sup &{S(s)}. S|l := sup T{S(s)}.
Re[s]=0 Re[s]=0

where S(s) is a transfer function matrix representation of S. The poles (system poles)
of a linear system X = Ax are defined by the roots of the characteristic polynomial
¢ (s) := det (s/ — A). In addition, a stable pole, an unstable pole, and a neutral pole
are defined as poles lie in the open left half-plane, open right half-plane, and the
imaginary axis of the complex plane, respectively.



