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“The Cosmos is all that is or was or ever will be. Our feeblest
contemplations of the Cosmos stir us — there is a tingling in the
spine, a catch in the voice, a faint sensation, as if a distant
memory, of falling from a height. We know we are approaching
the greatest of mysteries.”

Carl Sagan
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Overview

It is amazing how wildly different-sized objects exist in the Universe! The
red giant Betelgeuse is so monstrously larger than our Sun that it could
fill the orbit of Mars. But compared to our home Galaxy, the Milky Way,
Betelgeuse is just a grain of sand on a beach. Clearly, these sizes are relative,
and to distribute various objects over their sizes, we use a special term size
scale. The size scale of an object is a region large enough to include the
entire object but not so large that the object becomes insignificant.

Hermes Trismegistus, the founder of the philosophical school of Her-
meticism, is famous for saying: “Know then the Greatest Secret of
the Universe: As Above, So Below As Within, So Without”.
Nowadays, this idea is expressed by the term scaling. Scaling (or self-
similarity, being a synonym of this term) of a dynamical process z(t) is a
special kind of its symmetry such that a change in scale of some variables
can be compensated by a corresponding rescaling of others. Dealing with
phenomena relating to different scales, we often meet the problems with
graphical representation of dependencies under investigation for compar-
ing them. To put the graphs with different scales on the same plot, the
logarithmic transformation is often used

y=f(x) +— logy=¢(logz).
One of the specific properties of this transformation is its ability to
straighten power function graphs:

y=z% +— logy=alogz.

This is an important sign of the property called the self-similarity. We
can change the units of both x and y, but the slope of the log-log plot
remains the same. Functions of such kind characterize self-similar struc-
tures called fractals [Mandelbrot (1983)]. Many astrophysicists believe
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that interplanetary medium, interstellar medium, galaxy distributions pos-
sess fractal structure signs. The fractal concept lies in the base of modern
description of turbulence in hydrodynamics and plasma.

The concept of self-similarity plays a leading role in the probability the-
ory: you just recall the central limit theorem. Its extension to continuous
time provides us such universal stochastic model as the Brownian motion.
The first who saw the permanent chaotic motion of tiny pollen grains sus-
pended in water was the Scotland botanist Robert Brown (1827). He was
very surprised with this discovery and thought that this motion had the
living origin. However, he would be much more surprised if he knew that
his name will be associated with the movement of matter on giant cos-
mic scales! Namely this image had served as a basis for interpretation of
many astrophysical phenomena and especially for description of cosmic rays
propagation in the Galaxy [Berezinskii et al. (1984)].

Because of its chaotic character, Brownian motion does not look like
Newtonian motion of planets along Keplerian orbits, and its mathemati-
cal description was not an easy task in those days. Only many decades
later, Albert Einstein and independently of him Marian von Smoluchowski
solved this problem on the base of the random process theory. The physical
explanation of the phenomenon was based on assumption that atoms and
molecules actually exist, and was later verified experimentally by Jean Per-
rin in 1908. Perrin was awarded the Nobel Prize in Physics in 1926 “for his
work on the discontinuous structure of matter”. But 19th centuries earlier
Roman poet Titus Lucretius Carus (“On the Nature of Things”) gave an
instructive descripton of this phenomenon: “You will see a multitude
of tiny particles mingling in a multitude of ways... their dancing
is an actual indication of underlying movements of matter that
are hidden from our sight... It originates with the atoms which
move of themselves.”

In one-dimensional case, the Brownian propagator (probability density
function for one tracer with a fixed initial point) has the self-similar form

p(z,t) =t~ Y2g(xt™/?), —oo< T < 00,

where g(z) is the Gaussian density. Brownian trajectories are continuous
but nowhere differentiable curves (Fig. 0.1). The length of its segment
between any two points of such curve is infinite, which is a sign of its
fractality. Observe that giving ¢ natural values 1,23,..., we bridge to the
random walk model underlying such fundamental results of the probability
theory as the Large Numbers Law and the Central Limit Theorem.
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Fig. 0.1 A sample trajectory of the Brownian motion.

According to the latter, the size of a single walker probability cloud after
N steps is

R(N) = R(1)N'/2.
Here R(1) is the size of one step. Associating R(1) with the Compton length
h/mnc, we recognize the Eddington- Weinberg formula for interpretation of
the aggregation process for structures observed in the Universe. Estimating

the number of nucleons in a galaxy as 10%8, we arrive at the galaxy radius

R ~ 1—10 kpc and plausible interrelations for some other cosmic structures
(see Table 0.1).

Table 0.1. N — R interrelations for some structures.

Structure Number of nucleons N | Evaluated size R
Galaxies 10% 1-10 kpc
Clusters of galaxies 107 1-10 Mpc
Super-clusters of galaxies 1073 10-100 Mpc

Perhaps, this is the most impressive case of scaling relations covering
all from vanishingly small particles to unimaginably huge cosmical systems.
To express his feelings generated by all-swallowing self-similarity of cosmic
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Fig. 0.2 Cosmic Uroboros.

structures, Sheldon Glashow, 1979 Nobel Laureate in Physics, resorted to
the image of the Uroboros, laid on him some sort of dial with time-scale
replaced by length-scale numbered from 1073° e¢m to 10%° cm and named
this image the Cosmic Uroboros® (Fig. 0.2).

Following the self-similarity idea, the outstanding French mathemati-
cian Paul Lévy powerfully pushed limits of probability theory by discov-
ering a new class of laws and processes bearing now his name. The Lévy
motion propagator has the form

pla, o) = t”l/"g(xt_l/“;a), —00 < x < 00,

with positive constant a € (0, 2] called the Lévy exponent. The case a = 2
recovers the Brownian motion with Gaussian propagator, but when « < 2
we have the whole family of propagators — stable Lévy distributions —
with infinite variances and long tails of inverse power type. The correspond-
ing probability packets expand more rapidly than in the Brownian motion;

1The image of a serpent has led many cultures to associate it symbolically with the
creation of the world and the unity of all things, especially when the serpent is represented
as swallowing its own tail.



