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Preface

The cracking of massive concrete structures due to thermal stresses is a problem
which had puzzled engineers for a long time. “No dam without crack™ is the actual
state of concrete dams in the world. The theory of thermal stress and temperature
control of mass concrete is established by the writer in this book under the direc-
tion of which the problem of cracking of massive concrete structures had been
solved, and several concrete dams without crack have been successfully constructed
in China in recent years which indicates that the history of “No dam without crack™
has ended.

Mass concrete is important for the economical construction of a country. For
example, more than 10 million cubic meters of mass concrete are placed in the
hydraulic engineering projects in China every year. In addition, a large amount of
mass concrete is placed every year in the engineering of harbors, foundation of
high buildings heavy machines, nuclear reactors, etc.

The thickness of a massive concrete structure is immense, e.g., the thickness of
a concrete dam may be 100—200 m, the depth of the region under tension may be
10—30 m; if all the tensile stresses are undertaken by steel reinforcement, the
amount of steel will be considerable, and the cost will be very high. In the process
of construction, if there are many vertical steel reinforcements on the top of a con-
crete block, the spreading and placing of the new concrete lift will be very difficult.
Thus in the design of massive concrete structures, such as concrete dams, generally
it is required that the tensile stresses do not exceed the allowable tensile stress of
concrete so that no steel reinforcement is used. If there are only concrete weight
and water pressure acting on the dam, the above-mentioned requirement is easy to
achieve, but the period of construction of a high concrete dam may be several
years. Due to the heat of hydration of cement and the variation of the ambient tem-
perature, large tensile stresses may appear in the massive concrete structure. As a
result, cracks developed in almost all the concrete dams.

The concrete dams are divided into blocks and each block is constructed in
horizontal lifts with thickness 1—3 m. The intermissions between two lifts are
5—10 days. As the mechanical and thermal properties of concrete vary with age
and have different values in different layers, so the computing of thermal stresses
in concrete dams is rather complicated. In the past, there were no methods to com-
pute the thermal stresses in the period of construction of concrete dams, although
some temperature control measures had been adopted, but the thermal stresses in
the dam are unknown. Actually the tensile stresses are so large that many cracks
developed in almost all the dams.
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Now a perfect system of the theory of thermal stress and temperature control is
established by the writer in this book which includes the following parts:

1. A series of methods for computing the temperature field and the thermal stress field,
especially the simulation method for computing the temperature field and stress field of
the structure taking account of the influences of all the factors including (a) the process
of construction, (b) the mechanical and thermal properties varying with the age of con-
crete, (c) the variation of ambient air and water temperature, (d) the various measures of
temperature control.

2. The law of variation and peculiarity of thermal stresses of different types of massive con-
crete structures, such as gravity dams, arch dams, buttress dams, concrete blocks, locks,
sluices, concrete beams on elastic foundations, concrete pipes, and concrete linings of
tunnels. Understanding these issues by engineers is favorable for the construction of mas-
sive concrete structures without crack.

3. Various technical measures to prevent cracking of mass concrete, such as choice of raw
materials, precooling, pipe cooling, and superficial thermal insulation.

4. The experiences of many practical concrete dams, particularly the success of the con-
struction of several concrete dams without crack in China in recent years.

5. Many new ideas and new methods for prevention of cracking and temperature control of
mass concrete.

6. Comprehensive analysis of different schemes of construction of concrete dams with dif-
ferent combinations of the measures of temperature control.

In the design stage of a massive concrete structure, several schemes of temperature
control may be given and computed the temperature field and stress field in detail by
the methods given in this book, after comprehensive analysis, a rational scheme may
be obtained. Otherwise, a new scheme with improved combination of temperature
control may be given and analyzed, until a good scheme of temperature control is
obtained which will lead to the possibility that there will be no crack in the dam in the
construction and operation period. By this method, several concrete dams without
crack have been constructed in China in recent years. This is an important and valu-
able experience in the construction of massive concrete structures.

Cracks in massive concrete structures, such as concrete dams, will reduce the
safety, integrity, and durability of the structure. The repair of cracks in concrete
dams is very difficult, e.g.. a big crack developed in Norfork dam, the engineers
had attempted to repair the dam by grouting, but due to the worry that the crack
may develop further under the pressure of grouting, the crack was not repaired and
the dam has been working with a big crack in the dam body; as a result, the safety
and durability of the dam are reduced remarkably.

The successful construction of several concrete dams without crack in China is
an important achievement in technical science in the world.

Due to the needs of flood control, irrigation, and hydropower, many concrete
dams have been constructed in China in the past 60 years. At present the amount of
concrete dams higher than 15 m in China is over 40% of those elsewhere and the
three highest concrete dams in the world (Jingping 305 m, Xiaowan 295 m,
Xiluodu 284 m) are in China. In the process of large-scale construction of concrete
dams in China, besides learning abroad experiences, systematic research works had
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been carried out and new theory and new experiences were created: hence, the
problem of cracking in mass concrete has been solved and several concrete dams
without crack have been constructed in recent 10 years.

After graduating from university in 1951, the writer participated in the design and
construction of the first three concrete dams in China (Fuzhiling dam, Meishang
dam, and Xiang hongdian dam) in 1951—1957. Although some measures to prevent
cracking had been adopted, cracks still appeared in these dams, which indicates that
cracking of mass concrete is a complex problem. The writer began to research the
problem in 1955 and published two papers in 1956 and 1957 which triggered
research of thermal stress and temperature control of mass concrete in China.

In 1958, the writer was transferred to the China Institute of Water Resources and
Hydropower Research where he was engaged in the research work of high concrete
dams, particularly the thermal stresses and temperature control of concrete dams.

A vast amount of research works had been carried out under the direction of the
writer for a series of important concrete dams in China, such as Three Gorges,
Xiaowan, Longtan, Xiluodu, Sanmenxia, Liujiaxia, Xin'anjiang. and Gutian.

More than 120 papers had been published putting forward a series of new ideas.
new calculating methods, and new technical measures, including (1) a new idea of
“long time superficial thermal insulation together with comprehensive temperature
control™ which may prevent crack in mass concrete effectively, (2) methods for cal-
culating the temperature field and thermal stresses in dams, docks, sluices, tunnels,
concrete blocks, and beams on elastic foundations; (3) simulation thermal stress
computation taking into account the influences of all the factors and simulating the
process of construction; (4) method of back analysis for determining the practical
thermal and mechanical properties of concrete from the observed results; (5) the
new idea of numerical monitoring of mass concrete; (6) the new idea of semi-
mature age of concrete; and (7) formulas for determining the water temperature in
reservoirs and temperature loading of arch dams.

Hence, a perfect system of the theory of thermal stress and temperature control
of mass concrete is established whereby several concrete dams without crack have
been successfully constructed in China in the past 10 years, including the
Sangianghe concrete arch dam and the third stage of the famous Three Gorges con-
crete gravity dam and hence “no dam without crack”™ is no longer a problem.

The solution of the problem of cracking is an important achievement in the tech-
nology of mass concrete.

More than 10 results of the author’s scientific research were adopted in the spe-
cifications for design and construction of gravity dams, arch dams, docks, and mas-
sive concrete structures in China.

In order to summarize the experiences, the author published the book Thermal
Stresses and Temperature Control of Mass Concrete (in Chinese) in 1999,

The Information Center of the China Academy of Science published two statistics
in 201 1: (1) According to the number of quotations, the first 10 books of each profes-
sion of China, Thermal Stresses and Temperature Control of Mass Concrete is one of
the 10 most widely quoted books of civil engineering in China. (2) According to the
number of quotations, the first 20 authors of scientific papers of each profession in
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China, the writer is the first one of the 20 most widely quoted authors of hydraulic
engineering.

The author was awarded the China National Prize of Natural Science in 1982
for research work in thermal stresses in mass concrete, the China National Prize of
Scientific Progress in 1988 for research work in the optimum design of arch dams,
the China National Prize of Scientific Progress in 2000 for research work in simu-
lating computation and thermal stresses, and the International Congress on Large
Dams Honorary Member at Saint Petersburg in 2007.

Outside China there are two books on temperature control of mass concrete:
(1) US Bureau of Reclamation, Cooling of Concrete Dams, 1949, (2) Stuky A,
Derron MH, Problemes Thermiques Poses Par La Construction des Barrages-
Reservoirs, Lausanne, Sciences & Technique, 1957. Theoretical solutions and
many graphs for determining the temperatures of concrete dams are given in these
two books which are useful to engineers, but there is no method for computing the
thermal stresses, no method for preventing crack except pipe cooling, no criterion
for temperature control, no experiences for preventing cracks, particularly the suc-
cessful experiences in China, thus, they are insufficient for engineers to design and
construct mass concrete structures without crack.

A vast amount of mass concrete is placed in the world every year. How to pre-
vent crack is still an important problem, thus Thermal Stresses and Temperature
Control of Mass Concrete in English will be useful for engineers and professors of
civil engineering.

In this book, consideration is given to both the theory and the practice. On one
side, the methods for computing the temperature fields, thermal stresses, and the
variation of temperatures and thermal stresses in various types of mass concrete
structures are introduced in detail; on the other side, the technical measures to con-
trol temperature and to prevent cracking, the criterion of temperature control and
the experiences of practical engineering projects, particularly, the successful experi-
ences in China in the construction of several concrete dams without crack, are
described. A series of new ideas and new techniques, e.g., the idea of “long time
superficial thermal insulation together with comprehensive temperature control,”
MgO self-expansive concrete, etc., many useful methods, formulas, graphs, charts,
and figures are given.

Apart from causing cracks, the change of temperature is an important and com-
plex loading which has great influence on the stress state of concrete structures,
particularly the arch dam. In the design and construction of mass concrete struc-
tures, particular attention should be paid to thermal stress and temperature control.
I hope the publication of this book will give useful help to the engineers engaged
in the design and construction of mass concrete structures and the professors and
students of the department of civil engineering of universities.

I am grateful to Mr. Wu Longshen, Miss Hao Wenggian, and Mrs. Li Yue for
their help given to me in the preparation of this book.

Zhu Bofang
July 2013
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