O'REILLY

HAniZ BT (=2enpm)

% 8K WERit Kief Morris Z

EAilig Rl AL wam

Infrastructure as Code

Kief Morris &

Beijing + Boston « Farnham « Sebastopol » Tokyo O REILLY®

O'Reilly Media, Inc. %X Z= B A 2 H kit H AR

MR FEXFHRE

B HEMS B (CIP) 17

Tl 158 it B AR AT - BE S0/ (38D B - X H 3T (Kef
Morris)#. —RCENAS. — M 5L R p K22 Y it . 2018.1

4 44 J§ 3 : Infrastructure as Code

ISBN 978 —7-5641—-7295-4

I.OF- 0. .O%- [0 OBEFE-—HE
X N. OTP311.52

rp [IR A< B A5 0 CTP B8 2% 5 (2017) 248389 5
Bl .10 - 2017 — 349 &

© 2016 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2018. Authorized reprint of the original English edition, 2017 O'Reilly Media, Inc., the owner of all
rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
3 LR d O'Reilly Media, Inc. th #8 2016.

SESCH MR A kS R AR IR 2018, b OF AR 64 th R e 45 2 13 B o i A Fo 4 £ ALY BT
HE O'Reilly Media, Inc.#9# 7T .

WAEA KRB RET, KB GETR P L AR FAETBXEH,

B ik 5l BPACAS (B2 B AR

HUEAT : 7R KA R

Ho db. PEREEE 25 R4 210096
oM A TLEH

™ HE: http//www.seupress.com

ML F HE {4 : press@ seupress.com

il s T R A = DR A PR R
: 787 AR X980 2K 16 HA
2 2u]9

: 446 TF

: 20184F 1 A% 1 i

: 2018 4F 1 A5 1 RER

: ISBN 978 —7—-5641-7295-4

: 94.00 .

Mt EFHBHB
S xR

At B A EE R S E AR, BIE(EED 025 - 83791830

Preface

Infrastructure and software development teams are increasingly building and manag-
ing infrastructure using automated tools that have been described as “infrastructure
as code.” These tools expect users to define their servers, networking, and other ele-
ments of an infrastructure in files modeled after software source code. The tools then
compile and interpret these files to decide what action to take.

This class of tool has grown naturally with the DevOps movement.! The DevOps
movement is mainly about culture and collaboration between software developers
and software operations people. Tooling that manages infrastructure based on a soft-
ware development paradigm has helped bring these communities together.

Managing infrastructure as code is very different from classic infrastructure manage-
ment. I've met many teams who have struggled to work out how to make this shift.
But ideas, patterns, and practices for using these tools effectively have been scattered
across conference talks, blog posts, and articles. I've been waiting for someone to
write a book to pull these ideas together into a single place. I haven’t seen any sign of
this, so finally took matters into my own hands. You're now reading the results of
this effort!

How | Learned to Stop Worrying and to Love the Cloud

I set up my first server, a dialup BBS,” in 1992. This led to Unix system administra-
tion and then to building and running hosted software systems (before we called it
Saa$, aka “Software as a Service”) for various companies, from startups to enterprises.

1 Andrew Clay Shafer and Patrick Debois triggered the DevOps movement with a talk at the Agile 2008 confer-
ence (http://www.jedi.be/presentations/agile-infrastructure-agile-2008.pdf). The movement grew, mainly
driven by the series of DevOpsDays (http://www.devopsdays.org/) conferences organized by Debois.

2 A BBS is a bulletin board system (https://en.wikipedia.org/wiki/Bulletin_board_system).

Preface | xiii

I've been on a journey to infrastructure as code the entire time, before I'd ever heard
the term.

Things came to a head with virtualization. The story of my stumbling adoption of
virtualization and the cloud may be familiar, and it illustrates the role that infrastruc-
ture as code has to play in modern IT operations.

My First Virtual Server Farm

I was thrilled when my team got the budget to buy a pair of beefy HP rack servers and
licenses for VMware ESX Server back in 2007.

We had in our office’s server racks around 20 1U and 2U servers named after fruits
(Linux servers) and berries (Windows database servers) running test environments
for our development teams. Stretching these servers to test various releases, branches,
and high-priority, proof-of-concept applications was a way of life. Network services
like DNS, file servers, and email were crammed onto servers running multiple appli-
cation instances, web servers, and database servers.

So we were sure these new virtual servers would change our lives. We could cleanly
split each of these services onto its own virtual machine (VM), and the ESX hypervi-
sor software would help us to squeeze the most out of the multicore server machines
and gobs of RAM we’d allocated. We could easily duplicate servers to create new
environments and archive those servers that weren’t needed onto disk, confident they
could be restored in the future if needed.

Those servers did change our lives. But although many of our old problems went
away, we discovered new ones, and we had to learn completely different ways of
thinking about our infrastructure.

Virtualization made creating and managing servers much easier. The flip side of this
was that we ended up creating far more servers than we could have imagined. The
product and marketing people were delighted that we could give them a new envi-
ronment to demo things in well under a day, rather than need them to find money in
the budget and then wait a few weeks for us to order and set up hardware servers.

The Sorcerer’s Apprentice

A year later, we were running well over 100 VMs and counting. We were well under-
way with virtualizing our production servers and experimenting with Amazon’s new
cloud hosting service. The benefits virtualization had brought to the business people
meant we had money for more ESX servers and for shiny SAN devices to feed the
surprising appetite our infrastructure had for storage.

But we found ourselves a bit like Mickey Mouse in “The Sorcerer’s Apprentice” from
Fantasia. We spawned virtual servers, then more, then even more. They over-

xiv | Preface

whelmed us. When something broke, we tracked down the VM and fixed whatever
was wrong with it, but we couldn’t keep track of what changes we’d made where.

Well, a perfect hit!

See how he is split!

Now there’s hope for me,
and I can breathe free!

Woe is me! Both pieces

come to life anew,

now, to do my bidding

I have servants two!

Help me, O great powers!

Please, I'm begging you!
—Excerpted from Brigitte Dubiel’s translation of “Der Zauberlehrling” (“The Sor-
cerer’s Apprentice”) by Johann Wolfgang von Goethe

As new updates to operating systems, web servers, app servers, database servers,
JVMs, and various other software packages came out, we would struggle to install
them across all of our systems. We would apply them successfully to some servers,
but on others the upgrades broke things, and we didn’t have time to stomp out every
incompatibility. Over time, we ended up with many combinations of versions of
things strewn across hundreds of servers.

We had been using configuration automation software even before we virtualized,
which should have helped with these issues. I had used CFEngine in previous compa-
nies, and when I started this team, I tried a new tool called Puppet. Later, when spik-
ing out ideas for an AWS infrastructure, my colleague Andrew introduced Chef. All
of these tools were useful, but particularly in the early days, they didn’t get us out of
the quagmire of wildly different servers.

The problem was that, although Puppet (and Chef and the others) should have been
set up and left running unattended across all of our servers, we couldn’t trust it. Our
servers were just too different. We would write manifests to configure and manage a
particular application server. But when we ran it against another, theoretically similar
app server, we found that different versions of Java, application software, and OS
components would cause the Puppet run to fail, or worse, break the application
server.

So we ended up using Puppet ad hoc. We could safely run it against new VMs,
although we might need to make some tweaks after it ran. We would write manifests
for a specific task and then run them against servers one at a time, carefully checking
the result and making fixes as needed.

So configuration automation was a useful aid, somewhat better than shell scripts, but
the way we used it didn’t save us from our sprawl of inconsistent servers.

Preface | xv

Cloud from Scratch

Things changed when we began moving things onto the cloud. The technology itself
wasn’t what improved things; we could have done the same thing with our own
VMware servers. But because we were starting fresh, we adopted new ways of manag-
ing servers based on what we had learned with our virtualized farm and on what we
were reading and hearing from IT Ops teams at companies like Flickr, Etsy, and
Netflix. We baked these new ideas into the way we managed services as we migrated
them onto the cloud.

The key idea of our new approach was that every server could be automatically
rebuilt from scratch, and our configuration tooling would run continuously, not ad
hoc. Every server added into our new infrastructure would fall under this approach.
If automation broke on some edge case, we would either change the automation to
handle it, or else fix the design of the service so it was no longer an edge case.

The new regime wasn’t painless. We had to learn new habits, and we had to find ways
of coping with the challenges of a highly automated infrastructure. As the members
of the team moved on to other organizations and got involved with communities
such as DevOpsDays, we learned and grew. Over time, we reached the point where
we were habitually working with automated infrastructures with hundreds of servers,
with much less effort and headache than we had been in our “Sorcerer’s Apprentice”

days.

Joining ThoughtWorks was an eye-opener for me. The development teams I worked
with were passionate about using XP engineering practices like test-driven develop-
ment (http://martinfowler.com/bliki/TestDrivenDevelopment.html) (TDD), continu-
ous integration (http://www.martinfowler.com/articles/continuousIntegration.html)
(CI) and continuous delivery (http://martinfowler.com/books/continuousDeliv
ery.html) (CD). Because I had already learned to manage infrastructure scripts and
configuration files in source control systems, it was natural to apply these rigorous
development and testing approaches to them.

Working with ThoughtWorks has also brought me into contact with many IT opera-
tions teams, most of whom are using virtualization, cloud, and automation tools to
handle a variety of challenges. Working with them to share and learn new ideas and
techniques has been a fantastic experience.

Why I'm Writing This Book

I've run across many teams who are in the same place I was a few years ago: people
who are using cloud, virtualization, and automation tools but haven’t got it all run-
ning as smoothly as they know they could.

xvi | Preface

Much of the challenge is time. Day-to-day life for system administrators is coping
with a never-ending flow of critical work. Fighting fires, fixing problems, and setting
up new business-critical projects doesn’t leave much time to work on the fundamen-
tal improvements that will make the routine work easier.

My hope is that this book provides a practical vision for how to manage IT infra-
structure, with techniques and patterns that teams can try and use. I will avoid the
details of configuring and using specific tools so that the content will be useful for
working with different tools, including ones that may not exist yet. Meanwhile, I will
use examples from existing tools to illustrate points I make.

The infrastructure-as-code approach is essential for managing cloud infrastructure of
any real scale or complexity, but it’s not exclusive to organizations using public cloud
providers. The techniques and practices in this book have proven effective in virtual-
ized environments and even for bare-metal servers that aren’t virtualized.

Infrastructure as Code is one of the cornerstones of DevOps. It is the “A” in “CAMS”
(http://itrevolution.com/devops-culture-part-1/): culture, automation, measurement,
and sharing.

Who This Book Is For

This book is for people who work with IT infrastructure, particularly at the level of
managing servers and collections of servers. You may be a system administrator,
infrastructure engineer, team lead, architect, or a manager with technical interest.
You might also be a software developer who wants to build and use infrastructure.

I'm assuming you have some exposure to virtualization or Iaa$ (Infrastructure as a
Service) cloud, so you know how to create a server, and the concepts of configuring
operating systems. You’ve probably at least played with configuration automation
software like Ansible, Chef, or Puppet.

While this book may introduce some readers to infrastructure as code, I hope it will
also be interesting to people who work this way already and a vehicle through which
to share ideas and start conversations about how to do it even better.

What Tools Are Covered

This book doesn’t offer instructions in using specific scripting languages or tools.
There are code examples from specific tools, but these are intended to illustrate con-
cepts and approaches, rather than to provide instruction. This book should be helpful
to you regardless of whether you use Chef on OpenStack, Puppet on AWS, Ansible
on bare metal, or a completely different stack.

Preface | xvii

The specific tools that I do mention are ones which I'm aware of, and which seem to
have a certain amount of traction in the field. But this is a constantly changing land-
scape, and there are plenty of other relevant tools.

The tools I use in examples tend to be ones with which I am familiar enough to write
examples that demonstrate the point I'm trying to make. For example, I use Terra-
form for examples of infrastructure definitions because it has a nice, clean syntax,
and P've used it on multiple projects. Many of my examples use Amazon’s AWS cloud
platform because it is likely to be the most familiar to readers.

How to Read This Book

Read Chapter 1, or at least skim it, to understand the terms this book uses and the
principles this book advocates. You can then use this to decide which parts of the
book to focus on.

If you’re new to this kind of automation, cloud, and infrastructure orchestration tool-
ing, then you'll want to focus on Part [, and then move on to Part II. Get comfortable
with those topics before proceeding to Part IIL

If you've been using the types of automation tools described here, but don’t feel like
you're using them the way they’re intended after reading Chapter 1, then you may
want to skip or skim the rest of Part I. Focus on Part II, which describes ways of using
dynamic and automated infrastructure that align with the principles outlined in
Chapter 1.

If you're comfortable with the dynamic infrastructure and automation approaches
described in Chapter 1, then you may want to skim Parts I and II and focus on
Part 111, which gets more deeply into the infrastructure management regime: archi-
tectural approaches as well as team workflow.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

xviii | Preface

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

Safari® Books Online

+* Safari Books Online is an on-demand digital library that deliv-

ﬂ Safa rl ers expert content in both book and video form from the

world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For
more information about Safari Books Online, please visit us online.

Preface | xix

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/infrastructureAsCode_le.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

When 1 started working on this book, I assumed the result would be a product that
was entirely my own. But in the end, it’s just the opposite: this book is the product of
the ideas, thoughts, opinions, and experiences of far more people than I could have
imagined. I have probably mangled, oversimplified, and misrepresented this input.
But this book would not exist as it is without these contributions.

The people I worked with on the University of Tennessee’s computer science lab staff
taught me my Unix chops and inducted me into the culture. Chad Mynhier was par-
ticularly responsible for hooking me into the Unix world. He explained why I could
no longer cd into my own home area after I had experimented with the chmod com-
mand.

Working with a series of companies, including Syzygy, Vizyon, Cellectivity, and the
Map of Medicine, gave me the arena to develop my understanding and to learn how
to apply infrastructure automation to real-world business and user problems. I owe
much to the many good people of those organizations. T'll specifically call out Jona-
than Waywell and Ketan Patel for their unending support and encouragement,

xx | Preface

Andrew Fulcher for quickly learning what I had to teach and then teaching me even
more, and Nat Billington for his inspiration.

This book would truly never have happened without my current home, Thought-
Works. I've learned much about the ideas in this book and how to think about and
explain them to other people, thanks to more than five years of exposure to a dizzy-
ing number of organizations of various sizes, sectors, and technologies. The endless
curiosity of my colleagues, past and present, and their heartfelt drive to improve our
industry and the experiences of people in it, continually challenges me.

Generous support and encouragement from ThoughtWorks as an organization has
been vital for this book, especially as my energy flagged with the finish line coming
into view. Chris Murphy, Dave Elliman, Maneesh Subherwal, and Suzi Edwards-
Alexander are a few among many who have made this more than a personal project
for me.

An incomplete list of past and present ThoughtWorks colleagues who have gone out
of their way to contribute suggestions, feedback, and other support include: Abigail
Bangser, Ashok Subramanian, Barry O'Reilly, Ben Butler-Cole, Chris Bird
(DevOops!), Chris Ford, David Farley, Gurpreet Luthra, Inny So, Jason Yip, Jim
Gumbley, Kesha Stickland, Marco Abis, Nassos Antoniou, Paul Hammant, Peter
Gillard-Moss, Peter Staples, Philip Potter, Rafael Gomes, Sam Newman, Simon Brun-
ning, Tom Duckering, Venu Murthy, and Vijay Raghavan Aravamudhan.

Martin Fowler has given me tremendous encouragement and practical support in
writing this book. He gave me far more time than I could have asked, thoroughly
reviewing the manuscript several times. Martin gave me detailed, useful feedback and
advice based on his considerable experience of organizing and conveying technical
concepts. He has been a true champion of this book.

My colleague Rong Tang created the images for this book. She was extremely patient
with my muddled explanations of what I wanted. Any failings of clarity or consis-
tency is down to me, but the great look is a credit to her.

The folks behind the long-dormant Infrastructures.org (http://www.infrastruc
tures.org/index.shtml) exposed me to the ideas of Infrastructure as Code before the
term existed.?

I owe a great debt to the people of the DevOpsDays community, who are collectively
responsible for bringing the ideas of DevOps and Infrastructure as Code to promi-
nence. Regardless of who actually coined the term “Infrastructure as Code,” people
like Adam Jacob, Andrew Clay-Shafer, John Allspaw, John Willis, Luke Kaines, Mark

3 Sadly, as of early 2016, Infrastructures.org hasn’t been updated since 2007.

Preface | xxi

Burgess, and of course, Patrick Debois (“The Godfather of DevOps”) have given me
inspiration and many great ideas.

A number of other people have given me feedback and advice on earlier drafts of this
book, including Axel Fontaine, Jon Cowie, Jose Maria San Jose Juarez, Marcos Her-
mida, and Matt Jones. I also want to thank Kent Spillner, although I don’t recall why.
Ovine and dairy. Putney Bridge.

Last, but the furthest from least, everlasting love to Ozlem and Erel, who endured my
obsession with this book.

xxii | Preface

Preface....... o assipre Tl samamcit-amT D IR

Table of Contents

llllllll Ge s s eI RIN IR N LN xIII

Partl. Foundations

1. Challenges and Principles............. T

Why Infrastructure as Code?

What Is Infrastructure as Code?

Goals of Infrastructure as Code

Challenges with Dynamic Infrastructure
Server Sprawl
Configuration Drift
Snowflake Servers
Fragile Infrastructure
Automation Fear
Erosion .

Principles of Infrastructure as Code
Systems Can Be Easily Reproduced
Systems Are Disposable
Systems Are Consistent
Processes Are Repeatable
Design Is Always Changing

Practices
Use Definition Files
Self-Documented Systems and Processes
Version All the Things
Continuously Test Systems and Processes
Small Changes Rather Than Batches

----- SMe eI RINAERERRSIEIR IR RSN

W oo NNy WWwW

Keep Services Available Continuously
Antifragility: Beyond “Robust”

The Secret Ingredient of Antifragile I'T Systems
Conclusion
What's Next?

. Dynamic Infrastructure Platforms................ i S N6 Gy o

What Is a Dynamic Infrastructure Platform?
Requirements for a Dynamic Infrastructure Platform
Programmable
On-Demand
Self-Service
Infrastructure Resources Provided by the Platform
Compute Resources
Storage Resources
Network Resources
Types of Dynamic Infrastructure Platforms
Public [aa$S Cloud
Community [aaS Cloud
Private IaaS Cloud
Antipattern: Hand-Cranked Cloud
Hybrid and Mixed Cloud Options
Bare-Metal Clouds
Deciding on a Dynamic Infrastructure Platform
Public or Private?

Cloud Portability
Mechanical Sympathy with the Cloud and Virtualization
Conclusion
. Infrastructure Definition Tools................ S S v bice ERAROTCT» +

Choosing Tools for Infrastructure as Code
Requirement: Scriptable Interface

Requirement: Unattended Mode for Command-Line Tools

Requirement: Support for Unattended Execution

Requirement: Externalized Configuration
Configuration Definition Files

Reusability with Configuration Definitions
Working with Infrastructure Definition Tools

Provisioning Infrastructure with Procedural Scripts

Defining Infrastructure Declaratively

Using Infrastructure Definition Tools

Configuring Servers

17
17
18
19
9

21
21
22
23
24
Vi
25
26
26
28
30
30
30
30
31
32
32
34
34
37
39
40

41
42
42
42
43
45
48
49
50
51
53
54
54

iv

Table of Contents

Configuration Registries

Lightweight Configuration Registries

Is a Configuration Registry a CMDB?

The CMDB Audit and Fix Antipattern

The Infrastructure-as-Code Approach to CMDB
Conclusion

Server Configuration Tools.......... PP . po0r L) e rer [SN N

Goals for Automated Server Management
Tools for Different Server Management Functions
Tools for Creating Servers
Tools for Configuring Servers
Tools for Packaging Server Templates
Tools for Running Commands on Servers
Using Configuration from a Central Registry
Server Change Management Models
Ad Hoc Change Management
Configuration Synchronization
Immutable Infrastructure
Containerized Services
Containers

Managing Ruby Applications with and without Containers

Are Containers Virtual Machines?
Using Containers Rather than Virtual Machines
Running Containers
Security and Containers
Conclusion

General Infrastructure Services.cocoeveivirisns
Considerations for Infrastructure Services and Tools

Prefer Tools with Externalized Configuration

Prefer Tools That Assume Infrastructure Is Dynamic
Prefer Products with Cloud-Compatible Licensing

Prefer Products That Support Loose Coupling
Sharing a Service Between Teams
Service Instance Templates
Monitoring: Alerting, Metrics, and Logging
Alerting: Tell Me When Something Is Wrong
Metrics: Collect and Analyze Data
Log Aggregation and Analysis
Service Discovery
Server-Side Service Discovery Pattern

55
56
57
58
59
59

61
62
62
63
64
65
66
68
69
69
69
70
70
70
72
73
74
75
76
78

. 81

81
83
84
84
85
85
86
87
87
89
89
90
91

Table of Contents

v

Client-Side Service Discovery Pattern 91
Distributed Process Management 91
Orchestrating Processes with Server Roles 92
Orchestrating Processes with Containers 92
Scheduling Short Jobs 92
Container Orchestration Tools 92
Software Deployment 93
Deployment Pipeline Software 93
Packaging Software 94
Conclusion 96
Partll. Patterns
6. Patterns for Provisioning Servers............... 8 e N 04 Dl Ui O E T T cere 99
Server Provisioning 100
A Server’s Life 100
What Goes onto a Server 105
Types of Things on a Server 105
Server Roles 107
Patterns for Creating Servers 108
Antipattern: Handcrafted Server 109
Practice: Wrap Server Creation Options in a Script 110
Antipattern: Hot Cloned Server 111
Pattern: Server Template 111
Antipattern: Snowflake Factory 112
Patterns for Bootstrapping New Servers 112
Pushing to Bootstrap 113
Pulling to Bootstrap 113
Practice: Smoke Test Every New Server Instance 114
Conclusion 115
. Patterns for Managing Server Templates........... sl dana Aol 17
Stock Templates: Can’t Someone Else Do It? 117
Provisioning Servers Using Templates 118
Provisioning at Creation Time 118
Provisioning in the Template 119
Balancing Provisioning Across Template and Creation 120
The Process for Building a Server Template 121
Creating Templates for Multiple Platforms 122
Origin Images 123
Antipattern: Hot Cloned Server Template 123

Table of Contents

