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PREFACE

Rotating machinery is commonly used and plays an important
role in industrial applications. With rapid development of science
and technology, rotating machinery in modern industry is grow-
ing larger and more precise. It has become a challenging task to
enhance the availability, the reliability, and the security of rotat-
ing machinery. Prognostics and Health Management (PHM) is an
effective tool for dealing with this task. Therefore, it has attracted
considerable attention during the last few decades.

PHM of rotating machinery is composed of several modules,
like signal acquisition, signal processing, diagnostics, prognostics,
and maintenance decision. Some books have introduced many
fault diagnostics and prognostics methods for rotating machin-
ery. However, the earliest research achievements in the area of
fault diagnostics and prognostics are not addressed, which is the
motivation for writing this book. This book will provide an intro-
duction of intelligent fault diagnostics and RUL prediction based
on the current achievements appeared in academic journals, con-
ference proceedings, and technical reports.

The book involves the fundamental theories and the advanced
methods of intelligent fault diagnostics and RUL prediction for
rotating machinery. These methods are paralleled by experimen-
tal investigations and real applications for rotors, rolling element
bearings, and gears. It is able to provide a guide for the readers
from the area of PHM to know the basic concepts, the fundamen-
tal theories, and the cutting edge research. It can be used as a text
for master courses at both a fundamental and more advanced
level. It also benefits engineers as well as researchers in the area of
PHM of rotating machinery.

Most of the fault diagnostic and RUL prediction methods in
this book were developed at Xi’an Jiaotong University (XJTU),
China. So, I am grateful to my colleagues, Professor Jing Lin, Pro-
fessor Yanyang Zi, Professor Xuefeng Chen, Professor Zhousuo
Zhang, Professor Bing Li, etc., at XJTU, who have assisted me to
conduct many theoretical and practical research projects about
the subject of this book. I especially appreciate the guidance and
the support of my PhD supervisor, Professor Zhengjia He, who
died 3 years ago. I cherish the memory of the time when I was still
his PhD student working with him together. The longer the time
he leaves me, the more I miss him. This book is the best souvenir
I can present to Professor He in the third year of his passing away.
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INTRODUCTION
AND BACKGROUND

1.1 Introduction

Rotating machinery is commonly used in mechanical sys-
tems and plays an important role in industrial applications
(Lei et al., 2013). It generally operates under tough working en-
vironment and is therefore frequently subject to faults. Any fault
of the rotating machinery possibly causes a breakdown of the en-
tire mechanical system, which may reduce the reliability, security,
and availability of the machinery. With the rapid development of
science and technology, rotating machinery in modern industry
is growing larger and more precise. The structure of rotating ma-
chinery is becoming more complex. As a result, its potential faults
become more difficult to be detected. Therefore, how to maintain
the normal operation of rotating machinery has attracted consid-
erable attention in recent years.

There are various kinds of rotating machinery in various indus-
try fields, such as the aeroengine in the field of aerospace, the gas
turbine and wind turbine in the field of energy, and the automo-
bile transmission in the field of traffic. Even though the rotating
machinery is diversified, it generally includes some common es-
sential rotating parts, such as rotors, rolling element bearings, and
gears.

Arotor is defined as a rotating part of a machine that is general-
ly supported by bearings. They are the indispensable components
in rotating machinery. With the increasing requirement of reliabi-
lity and precision of rotating machinery, rotors become more fle-
xible and operate under tight clearances and harsh environment.
Under such circumstances, one incipient fault possibly causes se-
vere damages in other components and results in failures of the
entire machine. For example, a little unbalance of a rotor might
cause rub or serious impact between the rotating parts and the
stationary parts under a high-speed condition. Severe thermal
and mechanical stresses might lead to a fatigue crack in the rotors.
The common fault types of rotors include mass unbalance, bent,
misalignment, rub, resonance, and so on.
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A rolling element bearing is a component that carries loads by
placing rolling elements (such as balls or rollers) between two races.
The relative motion of the rings causes the rolling elements to roll
with little rolling resistance and little sliding. The rolling element
bearing is developed from an ancient transportation strategy where
sets of logs are laid on the ground with a large stone block on the top.
As the stone is pulled, the logs roll along the ground with little sliding
friction. A rolling element bearing generally includes three compo-
nents: an outer race, an inner race, and several rolling elements. Roll-
ing elements, such as balls or rollers, are able to reduce the friction
forces between the contacting elements. A rolling element bearing is
generally used to connect a shaft and a much larger hole with rollers
tightly filling the space between the shaft and hole. As the shaft turns,
each roller acts as the logs in the above example. Since the special
position and function, rolling element bearings generally suffer from
various attacks, such as improper mounting, mishandling, poor lu-
brication, entry of foreign matter, and abnormal heat generation. All
of these may cause different types of faults on rolling element bear-
ings. The common fault types include flaking, spalling, peeling, abra-
sion, scoring, corrosion, pitting, crack, material failure, and so on.

A gear is a rotating machine part having cut teeth, which mesh-
es with another toothed part to transmit torque. Two or more gears
working in a sequence (train) are called a gear train or, in many
cases, a transmission. Such gear arrangements are able to produce
a mechanical advantage through a gear ratio. Geared devices can
change the speed, torque, and direction of a power source. Al-
though, the most common situation is that a gear meshes with an-
other gear. A gear meshes with a nonrotating toothed part, called a
rack, thereby producing translation instead of rotation. The gears
in a transmission are similar to the wheels in a crossed belt pulley
system. An advantage of gears is that the teeth of a gear can pre-
vent slippage. When two gears mesh, and one gear is bigger than
the other, a mechanical advantage is produced, with the rotational
speeds and the torques of the two gears differing in an inverse re-
lationship. On account of the characteristics of the gears, they are
widely used to transmit torque and rotation in mechanical systems.

Rotating machinery plays an important role in the industry
applications because of its specific functions for mechanical sys-
tems. However, due to the specific function requirement, rotating
machinery generally operates under tough working environment.
Consequently, it always has a higher fault rate compared with other
components, and most maintenance costs are directly or indi-
rectly caused by the fault of rotating machinery. Here, we take the
wind turbine system, for example, and give some reports about its
fault rates and maintenance costs.
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The worldwide wind markets have been dramatically devel-
oped in recent years because of its economic advantages and
environmental protection compared with other sources of elec-
tricity. According to the half-year report in 2014 published by the
World Wind Energy Association (WWEA) (The World Wind Energy
Association, 2014), the total installed capability of the worldwide
wind turbine presents a stable increasing trend from 2011 to 2014
as shown in Fig. 1.1. The worldwide wind turbine capacity reached
336,327 MW by the end of June 2014. The total worldwide installed
wind turbine capacity by mid-2014 has generated around 4% of
the world’s electricity demand.

A major issue with the wind turbine system is the relatively
high costs of operation and maintenance (OM). Wind turbines are
hard-to-access structures, and they are often located in remote ar-
eas. These factors increase the OM costs for wind turbine systems.
In addition, poor reliability directly reduces the availability of
wind power due to the turbine downtime. For a turbine with over
20 years of operating life, the OM costs are estimated to be 10-15%
of the total income for a wind farm, and the OM costs for offshore
wind turbine are estimated to be 20-25% of the total income (Lu
etal., 2009). The main fault types of the wind turbine are shown in
Fig. 1.2, including imbalance, wear, fatigue, and impending cracks
in rotor blades, bearings, shafts, the gearbox, the generator, the
yaw, and the pitch angle mechanism. A study result for the causes
of failures of wind turbines is shown in Fig. 1.3. It is seen that, the
gearbox and generator are responsible for 17% of failures and 30%
of the maintenance costs, which are clearly leading candidates for
the causes of failures. Even in the wind turbine generators, most
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Figure 1.1. Total installed capacity of the worldwide wind turbine.
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Figure 1.2. Overview of the main faults of wind turhines.
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Figure 1.3. Statistic results for the causes of failure of wind turhines.
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faults are still caused by the rotating machinery. For induction
machines, about 40% failures are related to bearings, 38% to the
stator and 10% to the rotor (Hyers et al., 2006).

It is concluded from the above reports that the fault of rotating
machinery is the main cause of the failure of wind turbines. This
trend is similar in many other mechanical systems. So the health
management of rotating machinery is significant for reducing the
OM costs of mechanical systems. Analysis of maintenance costs
has shown that a repair made after failure always wastes lots of
costs compared with the same maintenance when the failure has
not occurred. A survey carried out by major organizations has re-
vealed that with an investment of 10,000 — 20,000 dollars in health
management, one can save up to 500,000 dollars annually (Saranga
and Knezevic, 2001). Thus, it is apparent that an appropriate
health management strategy is essential to sustain the inherent
reliability of mechanical systems and reduce the OM costs.

The health management strategies of rotating machinery ex-
perienced the following three development stages (Randall, 2011)
(Fig. 1.4).

1. Reactive maintenance (run-to-failure)

This is a traditional maintenance strategy where machines

keep running until they break down because of the final failure.

This strategy in principle gives the longest operation time be-

fore failures. However, it only provides a passive reaction after

a failure occurs, which may be catastrophic and result in severe

damages or accidents. This strategy is acceptable in some cases

where large numbers of machines are alternative even one ma-
chine has failed and the failure is not catastrophic. However,
for machines like wind-turbine generator sets, steam-turbine
generator sets, and heavy oil catalytic cracking units, the num-
ber of available machines is limited or the failure of a machine
possibly leads to a great cost, making this strategy helpless to
prevent the shutdown of the machines. Furthermore, if a fail-
ure would cause severe damages or catastrophes, this strategy
is also invaluable.

2. Preventative maintenance (time-based)

To prevent the happening of failures, machines are repeatedly

checked at regular time intervals in the preventative mainte-

nance, which is more conservative than reactive maintenance.

{
Reactive maintenance | Preventative maintenance Predictive maintenance
(run-to-failure) } | (time-based) (condition-based)

Figure 1.4. Development stages of the health maintenance strategies.
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Once an incipient fault is detected, it is common to shut down
the machine immediately and replace the fault components to
avoid catastrophic consequences. An appropriate time inter-
val for checking plays an important role in this strategy. If the
time interval is too long, some unforeseen failures are still pos-
sible to occur. In contrast, if the time interval is too short, too
much maintenance will be carried out and excessive replace-
ment components will be consumed. This strategy is supposed
to recognize the fault occurrence in time and plan the mainte-
nance strategy in advance to reduce the catastrophic failure.
However, it needs to shut down the machines frequently, which
inevitably reduces the production efficiency and consumes a
lot of maintenance costs. The preventative maintenance is ap-
propriate when the failure time is reasonably accurately pre-
dicted according to the statistical properties of large numbers
of the similar machines. However, for most rotating machines,
such as rolling element bearings, there is a large statistical
spread around the mean, leading to the estimates given by
large numbers of machines severely deviating from the actual
failure time of a single machine.
3. Predictive maintenance (condition-based)

Predictive maintenance, also called condition-based maintenance
(CBM), is a maintenance strategy that recommends mainte-
nance actions based on the information collected through con-
dition monitoring. In this strategy, the degradation trend of the
rotating machinery is first revealed through the analysis of con-
dition monitoring data. Then the degradation trend in the fu-
ture is predicted using some prediction models or techniques.
With a prespecified failure threshold, the remaining useful life
(RUL) of the rotating machinery is predicted. Based on the
predicted RUL, an optimal maintenance strategy is scheduled
before the real occurrence of the final failure. The predictive
maintenance has obvious advantages compared with either re-
active maintenance or preventative maintenance. It is able to
predict the potential breakdown of a machine through regular
condition monitoring thus preventing the happening of cata-
strophes. In addition, it schedules maintenance at an opti-
mum time according to the predicted RUL. Therefore, it is able
to make the machine have a maximum uptime with minimum
maintenance costs. Thanks to the superiority of the predic-
tive maintenance, it has attracted substantial attention in re-
cent years.

Based on the predictive maintenance strategy, a new concept
of prognostics and health management (PHM) has been de-
veloped in recent years. This book aims to provide an essential
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guide to the PHM of rotating machinery, from the basic con-
cepts and the fundamental theories to the latest techniques

and their applications.

1.2 Overview of PHM

The flowchart of the PHM of rotating machinery is shown in
Fig. 1.5. It is generally composed of five major processes, that is,
data acquisition, signal processing, diagnostics, prognostics, and

maintenance decision.

Fault detection

e

Fault isolation

R

| Fault identification |

State estimation
State prediction

R T

" RUL prediction

Data acquisition

Signal processing

i iy
h 4
Diagnostics - »Traditional methods
Bg !,,«" 3 » Intelligent methods
Egm n.!" » Clustering methods
| » Hybrid intelligent
A methods

» Data-driven methods
» Model-based methods

¥ Data-model-fusion
methods

A

.

Figure 1.5. Flowchart of the PHM of rotating machinery.
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1.2.1 Data Acquisition

Data acquisition is a process of capturing measurement signals
using different kinds of sensors from monitored machines and
storing the data into a computer. The measurement signals are
supposed to be related to the health conditions of the monitored
machines. In other words, the measurement signals incorporate
some useful information, which reflects the health conditions of
the machines. There are many different types of measurement
signals, such as vibration signals, acoustic signals, temperatures,
and electric currents. Various sensors including accelerometers,
acoustic emission sensors, infrared thermometers, ultrasonic
sensors, and so on, have been designed to collect different types
of signals. The captured signals are transmitted into a PC through
a data acquisition (DAQ) equipment and stored into a memory
location for further analysis. With the rapid development of ad-
vanced computer and sensor technologies, lots of new data acqui-
sition facilities and techniques have been designed and applied
in modern industries. These powerful and versatile facilities have
made data acquisition for PHM implementation more convenient
and feasible.

1.2.2 Signal Processing

Signal processing is to analyze the stored measurement sig-
nals in the data acquisition process using signal processing tech-
niques and methods. The task of signal processing is to extract
useful information that is able to reveal the health conditions
of the machines from the original measurement signals. It has
been fully developed till now and numerous signal processing
techniques and algorithms have been proposed in the literature.
They are roughly classified into the following three categories:
time-domain analysis, frequency-domain analysis, and time-
frequency-domain analysis.

The original measurement signals that are generally sampled
repeatedly between prespecified time intervals are in the form of
time domain. Thus, the time-domain analysis is directly based
on the original measurement signals. Traditional time-domain
analysis calculates statistic characteristics describing the health
conditions of machines, such as mean, peak, root mean square
(RMS), kurtosis, and skewness. These statistic characteristics are
named as time-domain features. Other commonly used time-
domain analysis methods include time synchronous average
(TSA), the autoregressive (AR) model, the autoregressive mov-
ing average (ARMA) model, principal component analysis (PCA),
and so on.
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Frequency-domain analysis is based on the transformed sig-
nals in frequency domain. The advantage of frequency-domain
analysis over time-domain analysis is its ability to decompose the
original signals into a series of frequency components. The most
widely used frequency-domain analysis is the spectrum analysis
by means of fast Fourier transform (FFT). The main idea of spec-
trum analysis is to isolate and locate certain frequency compo-
nents of interest relating to the fault characteristics of machines.
Power spectrum is a commonly used FFT-based method. Ceps-
trum is also widely used because of its capability to detect har-
monics and sideband patterns in power spectrum. Some useful
auxiliary tools for spectrum analysis include frequency filters, en-
velope analysis, side band structure analysis, and so on. Hilbert
transform which is a useful tool in envelope analysis has also been
used for machine fault detection and diagnostics.

Onelimitation of frequency—domain analysis is that it is only ef-
fective in handling stationary measurement signals and is unable
to deal with nonstationary measurement signals. However, the
measurement signals of machinery generally present nonstation-
ary characteristics. Thus, time—frequency-domain analysis, which
investigates measurement signals in both time and frequency
domains, has been applied into the nonstationary measurement
signal analysis. The time—frequency analysis describes the charac-
teristics of measurement signals in two-dimensional functions of
both time and frequency to better reveal the fault patterns of the
machines. One of the commonly used time-frequency-domain
analysis tools is short-time Fourier transform (STFT), which divi-
des the measurement signals into different segments with short-
time windows and then applies Fourier transform to each segment.
Due to the signal segmentation, the frequency resolution is
decreased inevitably. In addition, each signal segment is approxi-
mately considered to be a stationary process. Therefore, the STFT
can only be applied to nonstationary signals with slow change in
their rotating speeds. Another commonly used time—frequency-
domain analysis tool is Wigner—Ville distribution. It is based on
bilinear transform instead of signal segmentation. Therefore, it
overcomes the frequency resolution limitation of STFT. However,
due to the interference terms produced by the transformation
itself, it is difficult to explain the estimated distribution. An-
other tool for time—frequency analysis is the wavelet transform.
Different from the STFT, the wavelet transform can be used for
multiscale analysis of a signal through dilation and translation, so
it is able to extract time—frequency features of a signal effectively.
Due to the multiscale analysis ability, the wavelet transform is able
to produce a high frequency resolution at low frequencies and a



