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Preface

The application of the Fourier transform is being seen to an increasing
extent in all brahches of chemistry, but it is in the area of chemical analysis
that the greatest activity is taking place. Fourier transform infrared and
nuclear magnetic resonance spectrometry are already routine methods for
obtaining high-sensitivity IR and NMR spectra. Analogous methods are
now being developed for mass spectrometry (Fourier transform ion cyclo-
tron resonance spectrometry) and microwave spectroscopy, and Fourier
transform techniques have been successfully applied in several areas of
electrochemistry. In addition the fast Fourier transform algorithm has been
used for smoothing, interpolation, and more efficient storage of data, and
has been studied as a potential method for more efficient identification of
samples using pattern recognition techniques.

Linear transforms have also been shown to be useful in analytical
chemistry. Probably the most important of these is the Hadamard transform.
which has been applied in alternative methods for obtaining IR and NMR
data at high sensitivity. Even though measurements involving this algorithm
will probably not be applied as universally as their Fourier transform ana-
logs. in the area of pattern recognition application of the Hadamard trans-
form will in all probability prove more important than application of the
Fourier transform.

In this book, distinguished investigators in the various fields mentioned
above have written on their area of expertise at a level that should be
understandable to graduate analytical chemists and to the advanced under-
graduate, as well as the professional maintaining and updating research
skills. It is hoped that the similarities between the various spectroscopic and
data manipulation techniques will become evident throughout the book.
We have omitted treatment of crystallographic applications because they -
seem outside the mainstream of analytical interests.

After a brief look at the history of transform techniques in chemistry and
an editorial forecast of their applications in the future (Chapter 1), the mathe-
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viii Preface

matical basis of the Fourier transform is introduced by Charles Foskett of
Digilab, Inc., in Chapter 2. In Chapter 3, Alan Marshall and Melvin Comisa-
row of the University of British Columbia discuss the foundation of multi-
plex methods in spectroscopy, showing the origin of the advantages of
instruments that do not measure a spectrum directly, but rather generate
a signal that is related to the spectrum through the Fourier or Hadamard
transform. In Chapter 4, James Cooper of Tufts University discusses the
nature of the data-handling and computer capabilities required for on-line
Fourier transform spectrometry.

The next six chapters describe the theory, instrumentation, and appli-
cations of several different types of multiplex spectroscopy. In Chapters 5
and 6 the editor describes Fourier transform infrared spectrometry, and
in Chapter 7 Martin Harwit of Cornell University describes Hadamard
transform infrared spectrometry, including how this technique may be used
to multiplex information both spectrally and spatially. In Chapter 8,
Thomas Farrar of the National Science Foundation introduces Fourier
transform—NMR spectrometry, and some of the more recent advances in
this subject are described in the subsequent chapter (Chapter 9) by James
Cooper. In Chapter 10, the nature of Fourier transform ion cyclotron res-
onance spectrometry is introduced by Melvin Comisarow.

Several of the more important applications of the Fourier transform in
data processing are discussed in Chapter 11 by John Lephardt of Philip
Morris U.S.A., and in Chapter 12, the application of transform techniques
in pattern recognition is described by Charles Wilkins of the University
of Nebraska and Peter Jurs of Pennsylvania State University. Chapter
13, by Russell Larsen of the University of Nevada at Reno, describes poten-
tial applications of binary transforms for very rapid data processing; to
a greater extent than the previous chapters, this represents a look into the
future and is written to a slightly more advanced audience than the earlier
chapters. We believe it represents an important new transform technique of
the future and merits a more advanced treatment since there is little readily
available reference material on this subject. Finally, the editor has summar-
ized the applications of the Fourier transform in electrochemistry in a
chapter that illustrates not only the sensitivity advantage obtained through
acquiring data at several frequencies simultaneously but also shows how
the information content of different types of electrochemical data may be
enhanced by the application of the Fourier transform independently of
the manner in which the data were acquired.

That a volume such as this may be compiled is a tribute to the many
pioneers in all the areas covefed in this book. The fact that so many of the
techniques that are described here are now available in the market place
is similarly a tribute to the individuals and companies who had faith that
transform techniques were of sufficient value to be developed commercially.
On a more personal level, the editor and many of the authors would like
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to thank the various agencies that, in such timely fashion, supported their
research and the many co-workers without whose cooperation and hard
work many of the results described in this book would not have been found.
Finally, the secretarial assistance so valuable in preparing the manuscripts
of these chapters is gratefully acknowledged.

Peter R. Griffiths
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Chapter 1

Transform Techniques in
Chemistry:
Past, Present, and Future

Peter R. Griffiths

1.1. THE PAST

1.1.1. Optical Spectroscopy

Although the use of transform techniques in analytical chemistry and
applied spectroscopy has only become widespread in the past five years, the
history of this subject can be traced back to the middle of the nineteenth
century when the effect of the interference of light was first used to derive
spectroscopic information. In 1862, Fizeau'") used Newton’s rings to show
that the yellow sodium radiation was a doublet whose separation was 1/980
of their average wavelength. At the end of the century Michelson designed
the interferometer, which now bears his name.?**® The initial uses of this
instrument for spectroscopic purposes concerned the determination of
spectral profiles through the use of the visibility technique,” which is es-
sentially a study of the envelope of what we.now call the interferogram.
Rayleigh'® pointed out that a unique spectral distribution cannot be found
from the visibility curve itself, and the Fourier transform of the interfero-
gram is needed to calculate the spectrum unequivocally.

The actual calculation of a digital Fourier transform was beyond the
technical resources available at the turn of the century and, in a remarkable

Peter R. Griffiths ® Department of Chemistry, Ohio University, Athens, Ohio 45701
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2 Peter R. Griffiths

attempt to circumvent this limitation, Michelson developed a harmonic
synthesizer that was designed to output the Fourier transform of an input
signal. This was an 80-channel device consisting of 80 gears driving 80 wheels
to rotate at speeds proportional to the integers 1 through 80. Each wheel
rocked a lever, which in turn generated a simple harmonic motion in an
adjustable arm. Each arm was linked by springs to an axle, and the composite
motion of all 80 arrs moved a pen. There is no doubt that this was the first
Fourier transform computer; however, there is no record of Michelson
ever using this device to obtain a spectrum from an optical signal. He did
successfully reinvert synthetic signals, which in itself is a remarkable feat
since it was achieved more than 40 years before the same operation was
performed on a digital computer.

Michelson was able to show that the red Balmer line of hydrogen is a
doublet and that the red line of cadmium is exceptionally narrow. He pro-.
posed this line as a wavelength calibrant, and it was used as the standard
of length until 1960, when it was supplanted by the orange line of krypton
produced by a lamp operating at the triple point of nitrogen. He also showed
that the green line of natural mercury is a complicated multiplet, which he
was unable to resolve completely with his 80-channel harmonic synthesizer.

The first true interferogram was published by Rubens and Wood in
1911'®'; they were investigating the far-infrared radiation emitted by a
Welsbach mantle, and chose to use an interferometer because a quartz
prism with sufficient dispersion absorbed too much of the incident radiation.
They did not use a Michelson interferometer, but rather one that worked
using the same principles as the Newton’s rings apparatus employed by
Fizeau." Rubens and his co-workers, in this and subsequent work, guessed
a spectral distribution, calculated the Fourier transform, and then adjusted
the estimate to try to make the calculated and observed interferograms
match. No reason was ever given why this method was preferred to direct
Fourier transformation. In Rubens’ work the multiplex gain (vide infra) was
realized, but there is no evidence that it was ever appreciated.

Several refinements and applications of interferometry were made in
the next forty years, but it remained a tool for high-resolution spectroscopy
until Jacquinot in France and Fellgett in England recognized two important
advantages of interferometers for the measurement of spectra. Jacquinot’-*
recognized that the optical energy throughput (the product of the area and
solid angle of a beam at its focus) of a Michelson interferometer used for
spectroscopy is greater than that of a monochromator used for spectral
measurements at the same resolution. Fellgett’® not only published the
first numerically transformed interferogram, but also recognized that an
interferometer gave a fundamental advantage over a scanning monochroma-
tor, that of multiplexing the spectral information. The multiplex, or Fellgett,
advantage is the basis for several types of spectrochemical and electro-
chemical methods described in this book.

The gain in signal-to-noise ratio resulting from the application of the
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multiplex principle may be appreciated intuitively on the basis that the
signal integrates in direct proportion to T, the time of observation, whereas
the noise integrates in proportion to T'/2 If a total observation time T is
available for the exploration of M spectral elements, they may be investi-
gated sequentially or simultaneously, provided that, in the latter case, they
may be decoded at the end of the measurement. In sequential investigations,
each element is observed for an average time T/M, with a noise level pro-
portional to (T/M)'?, so that the signal-to-noise ratio is proportional to
(T/M)"3. In the simultaneous investigation, each element is observed for
a time T, and the signal-to-noise ratio is proportional to T'/2, indicating a
gain of M'? over the sequential case. For spectra measured with equal
signal-to-noise ratios on each type of spectrometer, the observation time
required for the sequential measurement is M times longer than the simul-
taneous measurement.

The time, effort, and cost involved in decoding the spectral information
from the output of a multiplex spectrometer was a principal reason for the
reluctance of chemists to use multiplex methods for infrared spectroscopy,
especially in view of the fact that most infrared spectrochemical data could
be obtained using a scanning monochromator (albeit at less than the opti-
mum signal-to-noise ratio). Only those scientists who could not obtain
acceptable spectra using a monochromator because of the weakness of
their sources had a strong interest in developing multiplex methods. It is
therefore not surprising that many of the pioneers of Fourier transform
infrared (FT-IR) spectrometry were astronomers and far-infrared spectros-
copists. Connes and Mertz, who led the development of high-resolution and
rapid-scanning low-resolution interferometers, respectively, are both astro-
nomical spectroscopists. Gebbie and Strong, who pioneered the develop-
ment of Michelson and lamellar grating interferometers, respectively, were
both interested in far-infrared measurements. The first Michelson interferom-
eter sold commercially was designed for measurements in the far-infrared
region,

It is surprising that, despite the simplicity of Micheison interferometers
designed for far-infrared spectroscopy, the first commercial instrument
(manufactured by Research and Industrial Instruments Corporation in
England) was not delivered until 1964, well over a decade after Jacquinot
and Fellgett showed the fundamental advantages of this type of instrument.
Since that time, the number of FT-IR spectrometers has steadily increased.
The development of the fast Fourier transform (FFT) algorithm has sub-
stantially reduced the time to compute a spectrum, to the point that it is
rarely the rate-limiting step in spectroscopic measurements. The develop-
ment of small, relatively inexpensive data systems has greatly increased
the flexibility and ease with which these instruments can be used. Now that
the advantages of FT-IR spectrometry are becoming appreciated by chemi-
cal spectroscopists, several new applications for infrared spectroscopy
are finally being used routinely in the analytical laboratory.



