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Convex Optimization of Power Systems

Optimization is ubiquitous in power system engineering. Drawing on powerful, modern
tools from convex optimization, this rigorous exposition introduces essential techniques
for formulating linear, second-order cone, and semidefinite programming approxima-
tions to the canonical optimal power flow problem, which lies at the heart of many
different power system optimizations.

Convex models in each optimization class are then developed in parallel for a variety of
practical applications such as unit commitment, generation and transmission planning,
and nodal pricing. Presenting classical approximations and modern convex relaxations
side-by-side, and a selection of problems and worked examples, this book is an invalu-
able resource for students and researchers from industry and academia in power systems,
optimization, and control.

Joshua Adam Taylor is Assistant Professor of Electrical and Computer Engineering at
the University of Toronto.
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Preface

The application of optimization to power systems has become so common that it
deserves treatment as a distinct subject. The abundance of optimization problems in
power systems can give the impression of diversity, but in truth most are merely layers
on a common core: the steady-state description of power flow in a network. In this book,
many of the most prominent examples of optimization in power systems are unified
under this perspective.

As suggested by the title, this book focuses exclusively on convex frameworks, which
by reputation are phenomenally powerful but often too restrictive for realistic, non-
convex power system models. In Chapter 3, the application of classical and recent
mathematical techniques yields a rich spectrum of convex power flow approximations
ranging from high tractability and low accuracy to slightly reduced tractability and high
accuracy. The remaining chapters explore problems in power system operation, plan-
ning, and economics, each consisting of details layered on top of the convex power
flow approximations. Because all formulations can be solved using standard software
packages, only models are presented, which is a departure from most books on power
systems. It is a major perk of convex optimization that the user often does not need to
program an algorithm to proceed.

I should comment that this book is not an up-to-date exposition of power system appli-
cations or optimization theory and that, inevitably, many important topics in both fields
have been omitted. My intention has rather been to bridge modern convex optimization
and power systems in a rigorous manner. While I have attempted to be mathemati-
cally self-contained, the pace assumes an advanced undergraduate level of mathematical
exposure (linear algebra, calculus, and some probability) as well as familiarity with
power systems and optimization. This book could be used in a course on power system
optimization or as a mathematical supplement to a course in power system design, oper-
ation, or economics. It is my hope that it will also prove useful to researchers in power
systems with an interest in optimization and vice versa, and to industry practitioners
seeking firm foundations for their optimization applications.
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Notation

AC Alternating current

DC Direct current

LP Linear programming

QP Quadratic programming

SOC(P)  Second-order cone (programming)
SD(P) Semidefinite (programming)

(C)QCP  (Convex) quadratically constrained programming
MI Mixed integer

NLP Nonlinear programming

KKT Karush-Kuhn-Tucker (conditions)

PNE Pure strategy Nash equilibrium

MNE Mixed strategy Nash equilibrium

i V-1

R The set of real numbers

C The set of complex numbers

Z The set of integers

X% The i entry of the vector x

x* The k" version of the quantity x, typically corresponding to the
k" scenario or time period

Re x The real part of x

Im x The imaginary part of x

| x| The absolute value of x

[ The two-norm of x, />, \12

Xij The entry at the i row and j column of the matrix X

x! The transpose of X

X* The Hermitian transpose of X. When X is scalar, the complex
conjugate.

X >0 The matrix X is positive semidefinite.

rank X The rank of X

tr X The trace of X. )", Xj;

det X The determinant of X

v The gradient operator
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Notation

To condense exposition, this book employs somewhat relaxed indexing notation.
Because there is little risk of ambiguity, / will often be used simultaneously as the imag-
inary unit and as an index. for example ig; would be /—1 times the i entry of ¢. In

most cases, constraint indexing will not be explicitly declared: for example,
gilx) =0

is implicitly enforced over i = 1....,n, which is almost always the set of nodes in the
network. Similarly. the sum

§ :""U

ij

is over all relevant node pairs {7, which are usually those connected by lines. Indexing
is denoted explicitly when it is not over a standard set. such as when summing over a
subset of nodes.

This book makes extensive use of feasible sets as organizational tools. Given a
collection of constraints g;(x) < 0, the corresponding feasible set is

{x | gitx) <0},

i.e., the set of points for which every constraint is satisfied.
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Introduction

A S 0 S i T S e

Recent history

Streetlights, subways, the Internet, this book you are reading now — it is difficult to
imagine life without such amenities, all enabled by electric power. To support such a vast
set of technologies, electric power systems have grown into some of the most complex
and expensive machines in existence. While much of this growth resembles an organic
process more than deliberate design, the advent of computing is enabling us more and
more to direct the evolution of power systems toward greater efficiency, reliability, and
versatility.

At the time of writing, the complexity of power systems is poised to take off. This
is largely due to shifts toward renewable energy production and the active involve-
ment of power consumers through demand response, as well as our still-developing
handle on economic deregulation. To meet these challenges, new computational tools
will be developed. and the most ubiquitous computation in power systems is optimiza-
tion. An objective of this book is to simplify and unify various topics in power system
optimization so as to provide a firm foundation for future developments.

At the heart of most power system optimizations are the equations of the steady-state,
single-phase approximation to alternating current power flow in a network. Well-known
problems like optimal power flow, reconfiguration, and transmission planning all consist
of details layered on top of power flow. Nodal prices, a core component of electricity
markets, are obtained from the dual of optimal power flow. It is therefore most unfor-
tunate that the power flow equations are nonconvex, making all of these optimizations
extremely difficult. We are thus faced with a tradeoff between realistic models that are
too hard to solve at practical scales and tractable approximations.

For many years, linear programming (LP) was the most general efficiently solvable
optimization class, and so many large-scale power system models were based on lin-
ear power flow approximations or even simpler descriptions like network flow or a
real power balance. At the other extreme, a number of nonlinear programming (NLP)
algorithms were developed for exact, nonconvex models. These approaches invariably
encountered difficulty scaling to larger problem sizes due to the underlying NP-hardness
of nonconvex optimization. This led some to resort to so-called metaheuristic algo-
rithms, which make little use of problem structure and give little indication of their
performance. Beyond their scalability issues, NLP and metaheuristic approaches can
be tiresome to implement because they often require the user to program both the
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mathematical model and algorithm. On the other hand, one would rarely write their own
algorithm to solve an LP because of the many available professional-grade commercial
and academic implementations.

In 1984, there was a turning point for convex optimization when Karmarkar invented
the first practical, polynomial-time interior point method for LP [1]. Over the next
decade, second-order cone programming (SOCP) and semidefinite programming (SDP)
emerged as convex generalizations of LP also admitting polynomial-time interior point
methods [2]. Of equal importance, SOCP and SDP are now featured in a number of
standard software packages, making them similarly user friendly.

The enhanced modeling capabilities of SOCP and SDP brought about an explosion
of research applications, some of which can be found in the standard text [3]. In 2006,
ripples from the previous twenty years were felt in power systems when power flow
in radial networks was posed as an SOCP in Jabr [4] and again in 2008 when an SDP
approximation of optimal power flow was developed in Bai, Wei, Fujisawa, and Wang
[5]. A substantial body of research has materialized in the short time since then, both
theoretically characterizing the new SOCP and SDP power flow approximations and
applying them in a variety of power system contexts. For most power system optimiza-
tion problems, we now have a spectrum of LP, SOCP, SDP, and NLP models to choose
from, each with a different balance of realism and scalability.

Structure and outline

This book only contains models and, with the exception of Chapters 2 and 7, rarely men-
tions algorithms. This is not because the algorithms are not worth knowing or decoupled
from modeling; one can always do better by formulating optimization models and algo-
rithms jointly. Rather, here this wisdom is applied by formulating models so that they
can be solved by certain algorithms. This approach is a luxury we can atford because
optimization is a relatively mature field: for a desired level of scalability, it identifies the
corresponding tradeoff between eftficiency and descriptiveness. Here, this manifests as
a hierarchy of convex optimization classes, the main elements of which are LP, SOCP,
and SDP. LP is the most efficient and least descriptive, SDP vice versa, and SOCP is in
between. As discussed in the previous section, once a model has been formulated within
one of these classes, it can be conveniently solved using standard software packages. By
tailoring our models to these classes, we arrive at tractable formulations far more easily
than if we were to design both model and algorithm from scratch.

The resulting separation between models and algorithms should not be seen as a
restriction but as a starting point for further specialization and extension. For exam-
ple, once a problem has been formulated as an LP, uncertainty can be mechanistically
incorporated using robust optimization (Section 7.1.2), or the problem can be split into
different chunks for multiple processors or agents (Section 7.2).

A central motif in this book is posing complicated models as layers on top of more
basic ones. To avoid rewriting the same constraints over and over, this book makes
extensive use of feasible sets to package frequently occurring groups of constraints
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for concise representation in other problems. Consequently, certain parts of this book
are highly cumulative. Each chapter is concluded by a summary highlighting important
points and open problems, as well as a small selection of exercises. In addition to those
given, which are all analytical. students are of course encouraged to implement each
chapter’s models and examples using their preferred optimization platform.

The chapter structure is summarized below.

Chapter 2: This chapter provides a minimal introduction to optimization and power
system modeling. In particular, it defines LP, SOCP, and SDP, and the tools used to
construct convex relaxations. It also derives the quadratic steady-state, single-phase
approximation to power flow in a network.

Chapter 3: This chapter defines the basic, nonconvex optimal power flow problem. It
then derives classical linear approximations and modern SOC and SD relaxations.
The constraints in these models form the foundation of all subsequent chapters in
this book.

Chapter 4: This chapter constructs linear, SOC, and SD versions of a number of central
optimization problems in power system operations using the approximations from
the previous chapter. Here and in the next chapter we encounter a number of mixed-
integer constraints, which make these problems challenging even with linear power
flow constraints. This chapter also takes brief detours though inventory control and
linear quadratic regulation.

Chapter 5: Similar to the last chapter, this chapter constructs infrastructure planning
problems around the power flow approximations of Chapter 3. In this chapter, every
problem is extremely difficult due to the integer constraints required to describe
component installation.

Chapter 6: This chapter discusses electricity markets, in which nodal prices are
obtained from the dual of optimal power flow. Because each convex approximation
has strong duality, prices are guaranteed to support economic dispatch. This chapter
also discusses why basic economic assumptions never hold in practice and briefly
summarizes some game theoretic analyses of market power.

Chapter 7: This final chapter surveys some promising directions for future work.

On approximations

Every model in this book is an approximation. In fact, every mathematical model ever
is an approximation, which inevitably fails to capture some fine physical detail. How-
ever, it is worth stating this explicitly here because every model in this book involves
an approximation of one particular model: the steady-state. single-phase description of
electric power in a network of conductors. We derive this model in Section 2.5 and place
it in the context of optimization in Section 3.1,

The steady-state, single-phase description of electric power is a special approxima-
tion because it derives from very natural physical assumptions and enables power system
engineers to take a large step from simulation to design, which is what this book is all



about. By definition, optimization is the highest (mathematical) form of design. Unfor-
tunately, the steady-state description of electric power isn’t quite right for optimization
because it is nonconvex. This book attempts to make the mildest further adjustments
necessary for this model and those built atop it to enjoy all that optimization has to
offer.

With this perspective in mind, it is helpful to remember the following two statements
when using this book.

® We would always use a more realistic description of electric power like an unbalanced
steady-state or transient model were it practical to do so. So, when it is practical, use
one of them and not the convex approximations in this book. We briefly elaborate on
this in Section 3.1.1.

® While immensely important, the steady-state description of electric power is not
sacrosanct. It is an approximation like all of the other models in this book, which
just happens to be (slightly) closer to reality. From this perspective, the convex
approximations in this book are no less valid than the model from which they are
derived.

References

[1] N. Karmarkar, “A new polynomial-time algorithm for linear programming.” in Proceed-
ings of the Sixteenth Annual ACM Symposium on Theory of Computing, ser. STOC "84.
New York: ACM, 1984, pp. 302-311.

[2] Y. Nesterov and A. Nemirovski, “Interior point polynomial methods in convex program-
ming.” SIAM Studies in Applied Mathematics, vol. 13, 1994.

[3] S. Boyd and L. Vandenberghe, Convex Optimization. New York: Cambridge University
Press. 2004.

[4] R. Jabr, “Radial distribution load flow using conic programming,” /EEE Transactions on
Power Systems, vol. 21, no. 3, pp. 1458 —1459. Aug. 2006.

[5] X. Bai, H. Wei, K. Fujisawa, and Y. Wang, “Semidefinite programming for optimal power
flow problems.” International Journal of Electrical Power and Energy Systems, vol. 30,
no. 6-7, pp. 383-392, 2008.



Dackground

2.1

This chapter summarizes the basic technical concepts used throughout this book. As
stated in the Introduction, this book focuses on modeling, so most algorithmic aspects
are left “under the hood.” Because this book is intended to appeal to anyone familiar
with power systems or optimization, background material on both topics is covered,
albeit at the minimum depth necessary to access the later material.

Convexity and computational complexity

We begin with a few core concepts. A point xp € X is a global minimum of the function

f(x) over the set X € R"if f(xg) < f(x) for all x € X. If f(x) is continuous and X is

compact, which is to say closed and bounded, such a point is guaranteed to exist. xg is
a local minimum of f(x) it there exists an € > 0 for which f(xg) < f(x) for all x € X
satisfying [|x — xgl] < e. All minima of a convex function achieve the same function
value and are therefore global. In general, a function may have multiple local and global
minima.

To find a global minimum of a convex function, choose a descending algorithm,
let it run free, and in a perfect world it will eventually end up there. (In the real
world, large problem sizes or bad numerical conditioning can derail any algorithm.)
The intuitive simplicity of convexity translates to a genuine computational advantage,
which is evinced by the powerful algorithms that exist for convex optimization and
the extreme difficulty of nonconvex optimization. This section gives some basic char-
acterizations of convexity and describes the varieties of convex optimization problems
encountered in this book. For more comprehensive coverage, the reader is referred to
endnotes [1-5], and to endnotes [6, 7] for theoretical treatments of convex functions
and sets.

A function f is convex if, for any two points in its domain, x and y,

flax 4+ (1 —a)y) = af (x) + (1 —a)f(v) forallw € [0, 1].

This means that any point on the straight line between (x,f(x)) and (y,f(v)) is greater
than or equal to the function value at the corresponding point between x and y. When f
is twice-differentiable, it is convex if and only if its Hessian is positive semidefinite:

V2 f(x) = 0.



