Advances in

bOMPUTER

Volume 33

AN
oK

’\5'4{
)

Edited by

ATIF MEMOR

Series Editors
AL Hurson and Atif Nemon .

> DVOLUME NINETY THREE

ADVANCES IN
COMPUTERS

Edited by

ATIF MEMON

University of Maryland

4115 A.V. Williams Building
College Park, MD 20742, USA
Email: atif@cs.umd.edu

Amsterdam ¢ Boston * Heidelberg * London
New York * Oxford * Paris « San Diego

San Francisco * Singapore * Sydney * Tokyo
Academic Press is an imprint of Elsevier

Academic Press 1s an imprint of Elsevier

225 Wyman Street, Waltham, MA 02451, USA

525 B Street, Suite 1800, San Diego, CA 92101-4495, USA

The Boulevard, Langford Lane, Kidlington, Oxford, OX51GB, UK
32, Jamestown Road, London NW1 7BY, UK

Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands

First edition 2014
Copyright © 2014 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means electronic, mechanical, photocopying, recording or otherwise
without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333,
email: permissions@elsevier.com. Alternatively you can submit your request online by visiting
the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining
permission to use Elsevier material.

Notices

No responsibility is assumed by the publisher for any injury and/or damage to persons

or property as a matter of products liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-800162-2

For information on all Academic Press publications
visit our web site at store.elsevier.com

’ 4« Working together
- to grow libraries in
PookMd developing countries

®l SEVTER

Transferred to Digital Printing 2014

vw.clsevier.com o wavw,boakaid, org

PREFACE

This volume of Advances in Computers is the 93rd in this series. This
series, which has been continuously published since 1960, presents in each
volume four to seven chapters describing new developments in software,
hardware, or uses of computers.

Even though software has been around for a number of decades, its
quality continues to elude computer engineers and scientists alike. This is
largely due to the multi-faceted nature of software quality. Consider, for
example, web applications that have become pervasive only in the last two
decades. They have needed new techniques to assess their quality because
they involve dynamic code creation and interpretation. Moreover, as soft-
ware has become larger in size, its quality assurance imposes prohibitive
performance overhead that has prompted the need for new, more efficient
solutions. As software interconnectivity has become pervasive, security has
quickly grown to be a dominant aspect of its quality, requiring novel tech-
niques. Finally, as software changes throughout its lifetime, quality assurance
approaches need to adapt with change. In this volume, we touch upon all
these issues.

This volume is a compilation of a set of five chapters that study issues
of software security, quality, and evolution.The authors of these chapters are
world leaders in their fields of expertise. Together their chapters provide a
view into the state-of-the-art in their respective fields of expertise.

Chapter 1, entitled “Recent Advances in Web Testing,” provides a com-
prehensive overview of the research carried out in the last ten years to sup-
port web testing with automated tools. The chapter categorize the works
available in the literature according to the specific web testing phase that
they address. In particular, it first considers the works aimed at building a
navigation model of the web application under test. Such a model is often
the starting point for test case derivation. Then, it considers the problem of
input generation, because the traversal of a selected navigation path requires
that appropriate input data be identified and submitted to the server dur-
ing test execution. Metrics are introduced and used to assess the adequacy
of the test cases constructed from the model. The last part of the chapter
is devoted to very recent advancements in the area, focused on rich client
web applications, which demand a specific approach to modeling and to
test case derivation.

vii

viii Preface

Chapter 2, entitled “Exploiting Hardware Monitoring in Software
Engineering,” discusses advances in program monitoring, a key component
of many software engineering tasks. Traditionally, instrumentation has been
used to complete such tasks. However, instrumentation can prohibitively
increase the time and especially the memory overhead of an application. As
an alternative to instrumentation, hardware monitoring has been shown to
aid in developing more efficient techniques. The chapter examines efforts
in applying hardware monitoring to a number of software engineering
tasks including profiling, dynamic optimization, and software testing. It
presents improvements in using instrumentation for monitoring, how
hardware mechanisms can provide an alternative, and the success that has
been revealed in software engineering research when applying hardware
monitoring approaches.

Sound methodologies for constructing security-critical systems are
extremely important in order to confront the increasingly varied security
threats. As a response to this need, Model-Driven Security has emerged
as a specialized Model-Driven Engineering approach for supporting the
development of security-critical systems. Chapter 3, entitled “Advances in
Model-Driven Security” summarizes the most important developments
of Model-Driven Security during the past decade. The chapter starts by
building a taxonomy of the most important concepts of this domain,
which it uses to describe and evaluate a set of representative and influential
Model-Driven Security approaches in the literature. The chapter focuses
on the concepts shared by Model-Driven Engineering and Model-Driven
Security, allowing the identification of the advantages, disadvantages and
open issues when applying Model-Driven Engineering to the Information
Security domain.

Chapter 4 is entitled “Adapting Multi-Criteria Decision Analysis for
Assessing the Quality of Software Products. Current Approaches and
Future Perspectives.” Our great reliance on software-based systems and
services nowadays requires software products of the highest quality. An
essential prerequisite for developing software of guaranteed quality in a
predictable way is the ability to model and objectively assess its quality
throughout the project lifecycle. A potential approach must handle the
abstract and multidimensional character of quality. This chapter leverages
the analogies between software quality assessment (SQA) and Multi-
Criteria Decision Analysis (MCDA) to investigate how MCDA methods
can support SQA.The chapter (1) identifies the most relevant requirements
for an SQA method, (2) reviews existing SQA methods regarding potential

Preface ix

benefits from using MCDA methods, and (3) assesses some popular MCDA
methods regarding their applicability for SQA. Although a number of SQA
methods proposed in recent years already adapt MCDA methods, the exact
rationales for selecting a particular method are usually unclear or arbitrary.
Usually, neither the goals nor the constraints of SQA are explicitly consid-
ered. Existing SQA methods do not meet the relevant requirements and
mostly share the same weaknesses independent of whether they employ
MCDA or not. In many cases, popular MCDA techniques are unsuitable
for SQA because they do not meet its basic constraints, such as handling
situations where data are scarce.

Software constantly changes during its life cycle. This phenomenon is
particularly prominent in modern software, whose complexity keeps grow-
ing and changes rapidly in response to market pressures and user demands.
At the same time, developers must assure the quality of this software in a
timely manner. Therefore, it is of critical importance to provide develop-
ers with effective tools and techniques to analyze, test, and validate their
software as it evolves. While techniques for supporting software evolution
abound, a conceptual foundation for understanding, analyzing, comparing,
and developing new techniques is also necessary for the continuous growth
of this field. A key challenge for many of these techniques is to accurately
model and compute the effects of changes on the behavior of software
systems. Such a model helps understand, compare, and further advance
important activities such as change-impact analysis, regression testing, test-
suite augmentation, and program merging. Chapter 5, entitled, “Change-
Effects Analysis for Evolving Software,” describe progress in developing
and studying a foundational approach called change-effects analysis. This
kind of analysis computes all the differences that a change in the code of
a program can cause on every element (e.g., statement) of that program.
These differences include not only which program elements are affected
by a change, but also how exactly their behavior (i.e., execution frequency
and states) is affected.

I hope that you find these articles of interest. If you have any suggestions
of topics for future chapters, or if you wish to be considered as an author
for a chapter, I can be reached at atif@cs.umd.edu.

Prof. Atif M Memon, Ph.D. College Park, MD, USA

CONTENTS

Preface

1. Recent Advances in Web Testing
Paolo Tonella, Filippo Ricca, and Alessandro Marchetto

VAW =

. Introduction

. Model Construction
. Input Generation

. Metrics

. Rich Client

. Conclusion

References
About the Authors

Exploiting Hardware Monitoring in Software Engineering
Kristen R. Walcott-Justice

AW =

. Introduction

. Reducing the Overhead of Program Monitoring
. Foundations in Hardware Monitoring

. Hardware Monitoring in Software Engineering
. Discussion and Future Directions

. Conclusions

References
About the Author

Advances in Model-Driven Security

Levi Licio, Qin Zhang, Phu H. Nguyen, Moussa Amrani, Jacques Klein,
Hans Vangheluwe, and Yves Le Traon

N OOV A W N -

. Introduction

. Model-Driven Engineering

. Model-Driven Security

. Evaluation of Current Model-Driven Security Approaches
. Discussion

. Related Work

. Conclusion

List of Acronyms

vii

18
27
36
46
48
50

53

54
57
58
67
91
96
96
101

103

104
105
112
118
136
4
142
143

vi Contents

Acknowledgments 144
References 144
About the Authors 151

4. Adapting Multi-Criteria Decision Analysis for Assessing
the Quality of Software Products. Current Approaches
and Future Perspectives 153

Adam Trendowicz and Sylwia Kopczyriska

1. Introduction 155

2. Background 158

3. Study Design and Execution 169

4. Analysis of Existing SQA Methods 187

5. Analysis of Popular MCDA Methods 196

6. Discussion 210

7. Summary and Conclusions 218

Acknowledgments 219

Appendix 220

References 221

About the Authors 225

5. Change-Effects Analysis for Evolving Software 227
Raul Santelices, Yiji Zhang, Haipeng Cai, and Siyuan Jiang

1. Introduction 229

2. Background 230

3. Related Approaches 237

4, Foundations of Change-Effects Analysis 242

5. Application: Test-Suite Augmentation Requirements 254

6. Application: Test-Suite Augmentation Requirements 255

7. Application: Demand-Driven Test-Suite Augmentation 261

8. Application: Quantitative Change-Impact Analysis 269

9. Conclusion 277

10. Future Directions 278

References 279

About the Authors 285

Author Index 287

Subject Index 297

Contents of Volumes in this Series 307

CHAPTER ONE

Recent Advances in Web Testing

Paolo Tonella®, Filippo Ricca®, and Alessandro Marchetto”

*Fondazione Bruno Kessler, Trento, Italy
TUniversity of Genova, Italy

Contents

1. Introduction 2
1.1 Running Example 4
1.2 Key Problems in Web Testing 5
1.3 Structure of the Chapter 6

2. Model Construction 6

2.1 UML Models 8

2.2 FSM Models 12

2.3 Identification of Logical Web Pages 15

3. Input Generation 18

3.1 Manual Techniques 19

3.2 (Semi-)automatic Technigues 21

3.2.1 Hidden Web Crawlers 21

3.2.2 Automating Equivalence Partitioning and Boundary Value Analysis 22

3.2.3 FuzzTesting 23

3.2.4 User-Session-Based Techniques 24

3.2.5 Symbolic Execution and Constraint Solving Techniques 26

4. Metrics 27

4.1 Adequacy Metrics 29

4.2 Crawlability Metrics 32

5. Rich Client 36

5.1 Dynamic Analysis 40

5.2 Model Mining 42

5.3 RIA Testing 45

6. Conclusion 46

References 48

About the Authors 50
Abstract

Web applications have become key assets of our society, which depends on web
applications for sectors like business, health-care, and public administration. Testing
is the most widely used and effective approach to ensure quality and dependability
of the software, including web applications. However, web applications are special as

Advances in Computers, Volume 93 © 2014 Elsevier Inc.
ISSN 0065-2458, http://dx.doi.org/10.1016/B978-0-12-800162-2.00001-4 All rights reserved. 1

2 Paolo Tonella et al.

compared to traditional software, because they involve dynamic code creation and
interpretation and because they implement a specific interaction mode, based on the
navigation structure of the web application.

Researchers have investigated approaches and techniques to automate web test-
ing, dealing with the special features of web applications. This chapter contains a
comprehensive overview of the research carried out in the last 10 years to support
web testing with automated tools. We categorize the works available in the literature
according to the specific web testing phase that they address. In particular, we first of
all consider the works aiming at building a navigation model of the web application
under test. In fact, such a model is often the starting point for test case derivation. Then,
we consider the problem of input generation, because the traversal of a selected nav-
igation path requires that appropriate input data are identified and submitted to the
server during test execution. Metrics are introduced and used to assess the adequacy
of the test cases constructed from the model. The last part of the chapter is devoted to
very recent advancements in the area, focused on rich client web applications, which
demand a specific approach to modeling and to test case derivation.

1. INTRODUCTION

Web applications represent a key, strategic asset of our society. Many
of the processes that affect our daily lives are mediated by web applications.
Nowadays, people expect to perform tasks related to their work, money,
health, public administration, and entertainment on the web. Online bank-
ing, e-commerce, e-government, e-health are all terms that refer to the vast
application domain and the multitude of application scenarios that involve
web applications. As a consequence, web applications must be dependable.
Being a critical, strategic asset, their quality and reliability must achieve ade-
quate standards.

While software quality has been investigated for a long time and a huge
amount of research works and practical tools are available to help developers
deliver the required quality level for traditional software, the same is not true
for web applications, because the web technology is quite recent, it differs
substantially from that of traditional software and it is rapidly changing. With
traditional software, testing is the most prominent approach to ensure that
adequate quality standards are met. Testing of traditional software usually
involves modeling the system under test, using the model to generate the
test cases and to evaluate their adequacy, and defining the oracles that specify
whether the behavior observed during testing is compliant with the one
expected by the end user. With web applications the key phases of testing
remain the same, but the reference model and the related adequacy criteria

differ substantially.

Recent Advances in Web Testing 3

For traditional software, a straightforward model of the system under
test is provided by the source code and more specifically the control flow
programmed in the source code. The control flow graph models the
execution flow inside each procedure while the call graph models the invo-
cation of procedures. Such models—and several others built upon them—
determine how to generate the test cases and how to evaluate their adequacy.
As a simple example, whitebox coverage criteria such as statement/branch
coverage demand that all nodes/edges in the control flow graph of the system
under test are exercised in at least one test case. This provides a clear guidance
for the creation of test cases and for the assessment of their adequacy with
respect to the target coverage goal (e.g., 100% branch coverage).

While web applications are still constructed as collections of source code
modules, they introduce more dynamism, associated with runtime code gen-
eration, and an alternative view of the execution flow, which is represented
by the navigation graph. Since they are organized as client-server programs,
web applications reside on the server, but the code that is run on the server
performs only part of the required computation. Another, relevant part is
delegated to the client and the code to be executed on the client is gener-
ated dynamically on the server. Such dynamism may have different degrees of
complexity. In the simplest case, the code running on the server just retrieves
an HTML page which is sent to the client and client side execution is limited
to page rendering. In more complex cases, fragments of script code is also
sent to the client, for client-side execution. This might involve, for instance,
the client-side validation of user input or the creation of graphical effects and
advanced interactions on the GUI. An extreme case of dynamism is repre-
sented by modern, rich-client web applications. In such a case, the client page
is continuously modified by client-side code which interacts asynchronously
with the server to obtain data and to execute services. A continuous flow
of data and code between client and server occurs dynamically, at runtime,
making the notion of source code no longer a static notion, which can be
subjected to control flow modeling, as with traditional software.

The navigation view offered by a web application to the end user is crucial
to testing. It is complementary to the control flow view, so it does not replace
it, but it introduces a different perspective for both test case generation and
adequacy assessment. The navigation graph, which describes how the end
user can possibly move from one page or one GUI state to another one,
introduces another, different coverage dimension, which is equally important
as the control flow one for quality assurance. Ensuring that the test cases
cover all statements/branches may be insufficient to ensure that all relevant
navigation paths have been adequately exercised. A novel modeling approach

4 Paolo Tonella et al.

is required for web applications, so as to focus on the navigations that are
possible, starting from the client-side web page the user interacts with. The
navigation model of a web application is the guiding principle and the key
reference to derive test cases and to assess whether the web application has
been tested enough.

1.1 Running Example

In this chapter, we use a running example to illustrate the various tech-

niques and approaches. We consider the same web application introduced in

previous works on the subject [13], an e-commerce application for online
shopping of products, more specifically, books. This web application provides
the typical functionalities involved in e-commerce:

* [Authentication] Users are required to have an account to be able to
buy a book. This involves the authentication of users through username
and password. The credential management system must ensure standard
levels of security to the application users.

¢ [Product selection] Users are allowed to search for books and to browse
books, according to different criteria (top selling, recommended, etc.).
Advanced search involves multiple filters and search constraints (e.g., price
threshold).

* [Cart management] Selected books are deposited into a virtual cart,
stored persistently for each user account and managed according to the
user’s choices.

* [Payment and shipping] Book payment and delivery involves the col-
lection of the information (credit card number, home address, etc.) neces-
sary to perform these actions. Methods for secure payment are employed,
so as to ensure that the transaction will take place safely for the end user.
Let us assume that the implementation of this web application contains a

bug. In particular, let us assume that the advanced search functionality is faulty

and ignores the price threshold search criterion. This means that all books
satisfying the other search criteria are returned, regardless of their price. To
expose this fault, the testing phase for this web application should include
the following steps: (1) a navigation model is constructed, which includes
the navigation path associated with the advanced search functionality; (2) test
scenarios are derived from the model and in particular one test scenario
will be produced to exercise the advanced search functionality, if we apply
the test adequacy criterion requesting that all functionalities reachable in the
navigation graph must be exercised in at least one test scenario; (3) input data
are provided for the selected test scenarios and in particular, the advanced

Recent Advances in Web Testing 5

search fields must be filled in, including the price threshold; (4) test cases
are executed and the fault related to advanced search is identified when the
returned book list includes also books that exceed the price threshold set by
the test case.

The cart management functionality of our running example might be
implemented using rich client technologies, such as Ajax. Technically, this
means that whenever a book is added to or removed from the cart, a client
side script (e.g., written in Javascript) will be executed, so as to modify the
Document Object Model (DOM) of the cart web page. This results in the
web page being updated to the new state of the cart. However, this is achieved
without requesting a new web page from the browser. Notification of the
cart update to the browser is instead carried out asynchronously, using the
Ajax client-server asynchronous communication facilities.

Since no transition from a page to another page occurs when a rich client
modifies the DOM, the navigation model for a rich client web application
will not be enough to thoroughly test it. In our running example, changing
the state of the cart does not correspond to any navigation path in the nav-
igation graph, since edges in this graph are exclusively associated with page
requests sent to the server and HTML response pages provided by the server
to the browser. As a consequence, to test the cart management functionality
a different modeling approach must be taken. Instead of focusing on the
navigation graph, in the case of a rich client web application, the modeling
focus shall be on the DOM state. Events that alter the DOM state will be
transitions in the rich client DOM model.

A model for the Ajax cart management may consist of a set of states, each
characterized by the number of items in the cart (e.g., O items, 1 items >
1 items). GUI events that trigger DOM changes (e.g., addToCart and remove-
FromCart events) are modeled as transitions between states. Testing the cart
functionalities can be turned into the problem of exercising the event
sequences in the rich client model of the cart functionality. In this way,
relevant behaviors of this functionality, that would go unnoticed in the nav-
igation graph, are exercised during testing.

1.2 Key Problems in Web Testing

Based on the example described above, we can categorize the key problems

associated with web testing as follows:

* [Model construction] A navigation graph of the application under test
must be constructed, so as to ensure that all relevant navigation paths are
exercised during testing.

6 Paolo Tonella et al.

+ [Input generation] Once a test scenario has been derived from the
navigation model of the web application, concrete input values must be
supplied to make it an actually executable test case.

* [Metrics] Adequacy metrics are computed to determine if the set of test
cases produced so far provides enough coverage of the web application
model or if additional test cases must be produced. Metrics are also useful
to characterize the part of a web application that are more difficult to
be explored by automated tools, hence requiring manual intervention
during testing (these are called crawlability metrics).

* [Rich client] When scripts running on the client modify the DOM
directly and communicate asynchronously with the server, the navigation
graph is no longer appropriate as a model for test case derivation and a
different model, representing the DOM states and transitions, should be
adopted.

1.3 Structure of the Chapter

This chapter complements a previously published chapter on the same topic
[17]. We share with the previous publication [17] the same high level view
of the testing process, consisting of: (1) model construction; (2) test case
generation from the model; (3) adequacy metrics and criteria, to decide on
the thoroughness of testing. However, we analyze in depth a complemen-
tary set of problems: while the previous work [17] is focused on modeling
notations (including statistical Markov models, object-oriented models and
regular expressions) and portability analysis, we consider the problems of
automated model construction, automated input generation and metrics.
Moreover, we include also recent works on modeling and testing of rich
client web applications.

The rest of this chapter is organized along the four problems identi-
fied above. Specifically, Section 2 presents the main approaches for model
construction; Section 3 describes the most important input generation tech-
niques; Section 4 deals with metrics; Section 5 provides details on how to
model rich client web applications and how to test them.

2. MODEL CONSTRUCTION

In web testing, a model-based approach is often adopted to derive
navigation sequences that are successively turned into executable test cases
[2, 16, 15, 40, 41, 46]. Hence, the problem is how to define a web application
model and how to construct it. Since the focus is on navigation sequences, a

Recent Advances in Web Testing 7

web model can be abstractly regarded as a navigation graph, whose paths corre-

spond to the various possible navigation sequences. While such a navigation

graph is the backbone of almost all proposed test models for web applications,

we can distinguish two major families of web models adopted for testing:

* [UML models] These models extend Conallen’s UML model [11] with
test-specific information.

* [FSM models] These models adopt a finite state machine-based
approach, which incorporates states, transitions and guards.

Since both types of models are based on the same underlying navigation
graph, it is possible to define a mapping between them, with limited loss of
information.

The problem of constructing a web application model to be used during
testing can be approached manually, automatically, or semi-automatically.
Automated or semi-automated model construction can be viewed as a reverse
engineering problem. Based on static and dynamic information collected
for the web application to be modeled, a model is synthesized, sometimes
with the help of the tester or requiring the tester to perform some post-
construction refinement.

Static analysis alone is not adequate for the reverse engineering of web
application models. In fact, the information available statically is severely
limited and incomplete. Dynamically generated pages are obtained by con-
catenating fixed HTML fragments with additional content which is com-
puted at run time, possibly depending on the user input. This means that the
actual HTML code of a web page is not known entirely until the web page
is actually navigated at run time. Moreover, the web page may include client
side scripts (e.g., Javascript code), which are synthesized dynamically at the
server side and which might affect the web page structure at run time. In fact,
client side scripts have access to the Document Object Model (DOM) of
the web page both in read and write mode. This means that at run time the
structure of a web page may change due to client side script execution. Addi-
tional dynamism may come from late binding to external services invoked by
the web application and by dynamic component loading on the server side.
Reflection on the server side may introduce even further dynamism. For all
these reasons, all approaches for the reverse engineering of a web model take
advantage of both static and dynamic information [3, 40, 41, 46].

Each static or dynamically constructed web page is a node in the nav-
igation graph of the web application. In UML models this is represented
as a class in the class diagram. In FSM models it is a state. Whatever is the
representation, a common problem is that during web navigation

8 Paolo Tonella et al.

(i.e., dynamic analysis), pages that have different structure and content may
indeed represent the same logical page in the model. For instance, the page
that shows the information of a particular web application user will be dif-
ferent from that shown for another user. However, such pages should not
be treated as different nodes of the model. They are in fact the same logical
page. The problem of identifying Logical Web Pages (LWP) from the actually
navigated pages is a key problem in model construction for web applications
and different authors have come out with different solutions to the problem.

In the following, we describe the UML models and the FSM models that
have been proposed in the context of model construction for web testing.
Then, we analyze in depth the LWP identification problem.

2.1 UML Models

Figure 1 shows an excerpt of the UML meta-model that defines Conallen’s
UML notation for web application models. A static HTML page is a class to
which the «ClientPage>> stereotype from the UML meta-model applies.
Hyperlinks between pages are modeled as <«<Link>> associations. A page may
contain forms, used to collect user input to be submitted to the server. The
<& Form>> stereotype applies to the classes that represent the HTML forms.
Attributes of «Form>> classes can be stereotyped as «InputElement>>,
<K SelectElement>> or <TextAreaElement>>, depending on the kind of
input that is collected from the user (respectively, a single text field, a selection
among multiple constant values or a multi-line text field). The server script
that is executed upon form submission is stereotyped as <ServerPage>>.
The HTML page it constructs dynamically is obtained by following the

<<Link>>
<<Builds>>
1
0. .
0.* 5 &
<<ClientPage>>[<<Form>> <<ServerPage>>
<<inputElement>>
<<SelectElement>>
<<TextAreatlement>>
Fig 0.*
I‘ 1
- 0.1 <<FrameContent>> <<Link>>
fectr
<<Target>> ’
<<FrameContent>>

Fig. 1. Excerpt of the Conallen UML meta-model.

Recent Advances in Web Testing 9

=
<<link>>
= <<ahnh‘qo>>‘ <<Form>> add <<ServerPage>>
m.‘ AddToCart CartManagement
e
P amount
[<<inputElement>> product}
login ’[
<<Link>>
<<Link>> <, >
<<Redirect>>
<<ClientPage>> <<Form>>
Login Login login Se 9
[<<InputElement>>

Fig. 2. Example of Conallen model.

«&Builds>> association. Page redirection is modeled by the stereotype
< Redirect>> (not shown in the figure for lack of space).

Pages can be divided into frames and page loading can be directed to a
specific target frame. This is modeled in Conallen’s notation using stereotypes
& FrameSet>>> and < Target>>.

Figure 2 shows an example of Conallen UML model. The web applica-
tion being modeled is a typical e-commerce application, which includes user
authentication, product browsing and selection, cart management, payment
and checkout. For lack of space, Fig. 2 shows only a portion of the model,
including authentication, product browsing and cart management.

Navigation starts from the static client page Home. From this page, users
can either decide to authenticate themselves, by clicking on the login hyper-
link, or to proceed with product browsing, by moving to the client page
ShowProducts. The Login page contains a form with two attributes, username
and password, both stereotyped as <InputElement>>. Such form can be sub-
mitted to the server. The server page that handles authentication is named
Authentication.

Product browsing is performed inside the client page ShowProducts. Users
can add products to their cart by entering the amount of products they want
to add into the amount text field of the form and by submitting the form to
the server page CartManagement, which in turn updates the page ShowProducts
and stores the selected products into the database holding the user cart (not
shown in the model).

Several approaches to web analysis and testing [16, 15, 39, 41, 46] are
based on the Conallen’s web modeling notation and use static and dynamic
analysis to reverse engineer a Conallen model for a web application. Tools
that implement these approaches are based on navigation in the target web
application to extract its web pages and to build a Conallen model of the

